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Preface

The Fast Software Encryption 2005 Workshop was the twelfth in a series of
annual workshops on symmetric cryptography, sponsored for the fourth year by
the International Association for Cryptologic Research (IACR). The workshop
concentrated on all aspects of fast primitives for symmetric cryptology, including
the design, cryptanalysis and implementation of block and stream ciphers as well
as hash functions and message authentication codes. The first FSE workshop
was held in Cambridge in 1993, followed by Leuven in 1994, Cambridge in 1996,
Haifa in 1997, Paris in 1998, Rome in 1999, New York in 2000, Yokohama in 2001,
Leuven in 2002, Lund in 2003, and New Delhi in 2004.

This year, a total of 96 submissions were received. After an extensive review
by the Program Committee, 30 submissions were accepted. Two of these sub-
missions were merged into a single paper, yielding a total of 29 papers accepted
for presentation at the workshop. Also, we were very fortunate to have in the
program an invited talk by Xuejia Lai on “Attacks and Protection of Hash Func-
tions” and a very entertaining rump session that Bart Preneel kindly accepted
to chair. These proceedings contain the revised versions of the accepted papers;
the revised versions were not subsequently checked for correctness.

We are very grateful to the Program Committee members and to the ex-
ternal reviewers for their hard work. Each paper was refereed by at least three
reviewers, and at least five reviewers in the case of papers (co-)authored by Pro-
gram Committee members; eventually, an impressive total of 334 reviews was
produced. Special thanks are also due to the members of the Local Organiz-
ing Committee, Côme Berbain, Olivier Billet (who designed the FSE 2005 Web
pages and assembled the preproceedings), Julien Brouchier (who managed the
submission and Webreview servers), Stanislas Francfort, Aline Gouget, Françoise
Levy, Pierre Loidreau, and Pascal Paillier (who managed on-site registration),
for their generous efforts and strong support.

Many thanks to Kevin McCurley for handling the registration server, to
Patrick Arditti, Virginie Berger and Claudine Campolunghi for providing as-
sistance with the registration process, and to the research group COSIC of the
K.U.Leuven for kindly providing their Webreview software.

Last but not least, we would like to thank the conference sponsors France
Telecom, Gemplus, and Nokia for their financial support, DGA and ENSTA
for hosting the conference on their premises, and all submitters and workshop
participants who made this year’s workshop such an enjoyable event.

April 2005 Henri Gilbert and Helena Handschuh
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A New MAC Construction Alred and a Specific
Instance Alpha-MAC

Joan Daemen1 and Vincent Rijmen2,3,�

1 STMicroelectronics Belgium
joan.daemen@st.com

2 IAIK, Graz University of Technology,
vincent.rijmen@iaik.tugraz.at

3 Cryptomathic A/S

Abstract. We present a new way to construct a MAC function based
on a block cipher. We apply this construction to AES resulting in a MAC
function that is a factor 2.5 more efficient than CBC-MAC with AES,
while providing a comparable claimed security level.

1 Introduction

Message Authentication Codes (MAC functions) are symmetric primitives, used
to ensure authenticity of messages. They take as input a secret key and the
message, and produce as output a short tag.

Basically, there are three approaches for designing MACs. The first approach
is to design a new primitive from scratch, as for instance MAA [15] and, more
recently, UMAC [8]. This approach allows to optimize the security-performance
trade-off. The second approach is to define a new mode of operation for existing
primitives. In this category, we firstly have numerous variants based on the
CBC encryption mode for block ciphers, e.g. CBC-MAC [5], OMAC [16], TMAC
[22], XCBC [9], and RMAC [17]. Secondly, there are the designs based on an
unkeyed hash function: NMAC, HMAC [7, 4]. Finally, one can design new MACs
using components from existing primitives, e.g. MDx-MAC [24] and Two-Track
MAC [10].

In this paper, we propose a new MAC design method which belongs in the
third category, cf. Section 3. We also present a concrete construction in Section 5.
Before going there, we start with a discussion of security requirements for MACs
and we present a new proposal for MAC security claims in Section 2. We discuss
internal collisions for the new model in Section 4, and for the concrete construc-
tion in Section 6. Section 7 contains more details on extinguishing differentials,
a special case of internal collisions. We briefly discuss performance in Section 8
and conclude in Section 9.

� This researcher was supported financially by the A-SIT, Austria.

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 1–17, 2005.
c© International Association for Cryptologic Research 2005



2 J. Daemen and V. Rijmen

2 Iterative MAC Functions and Security Claims

A MAC function maps a key-message pair to a tag. The basic property of a MAC
function is that it provides an unpredictable mapping between messages and the
tag for someone who does not know, or only partially knows the key. Usually,
one defines a number of design objectives that a cryptographic primitive of a
given type must satisfy in order to be considered as secure. For MAC functions,
we find the following design objectives in [23–Table 9.2]:

– Key non-recovery: the expected complexity of any key recovery attack is of
the order of 2�k MAC function executions.

– Computation resistance: there is no forgery attack with probability of success
above max(2−�k , 2−�m).

Here �k is the key length and �m the tag length. By forgery one means the
generation of a message-tag pair (m, t) using only information on pairs (mi, ti)
with m �= mi for all i.

2.1 Iterative MAC Functions

Most practical MAC functions are iterative. An iterative MAC function operates
on a working variable, called the state. The message is split up in a sequence of
message blocks and after a (possibly keyed) initialization the message blocks are
sequentially injected into the state by a (possibly keyed) iteration function. Then
a (possibly keyed) final transformation may be applied to the state resulting in
the tag.

Iterative MAC functions can be implemented in hardware or software with
limited amount of working memory, irrespective of the length of the input mes-
sages. They have the disadvantage that different messages may be found that
lead to the same value of the state before the final transformation. This is called
an internal collision [26].

2.2 Internal Collisions

Internal collisions can be used to perform forgery. Assume we have two messages
m1 and m2 that result in an internal collision. Then for any string m3 the two
messages m1‖m3 and m2‖m3 have the same tag value. So given the tag of any
message m1‖m3, one can forge the tag of the message m2‖m3. Internal collisions
can often be used to speed up key recovery as well [25]. If the number of bits
in the state is n, finding an internal collision takes at most 2n + 1 known pairs.
If the state transformation can be modeled by a random transformation, one
can expect to find a collision with about 2n/2 known pairs due to the birthday
paradox. One may consider to have a final transformation that is not reversible
to make the detection of internal collisions infeasible. However, as described in
Appendix A, this is impossible.

The presence of internal collisions makes that even the best iterative MAC
function cannot fulfill the design objectives given above: if the key is used to
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generate tags over a very large number of messages, an internal collision is likely
to occur and forgery is easy.

For many MAC schemes based on CBC-MAC with the DES as underlying
block cipher, internal collisions can be used to retrieve the key: the ISO 9797 [5]
schemes are broken in [11, 18]. More sophisticated variants like Retail MAC [1]
and MacDES [19] are broken in [25], respectively [12, 13].

One approach to avoid the upper limit due to the birthday paradox in itera-
tive MAC functions is diversification. The MAC function has next to the message
and the key a third input parameter that serves to diversify the MAC compu-
tation to make the detection of internal collisions impossible. For the proofs of
security that accompany these schemes, the implementation of a tag generating
device must impose that its value is non-repeating or random. This method has
several important drawbacks. First of all, not only the tag must be sent along
with the message, but also this third parameter, typically doubling the over-
head. In case of a random value, this puts the burden on the developer of the
tag generating device to implement a cryptographic random generator, which is
a non-trivial task. Moreover the workload of generating the random value should
be taken into account in the performance evaluation of the primitive. In case of a
non-repeating value the MAC function becomes stateful, i.e., the tag generation
device must keep track of a counter or multiple counters and guarantee that
these counters cannot be reset. But in some cases even the randomization mech-
anism itself introduces subtle flaws. The best known example of a randomized
MAC is RMAC [17] cryptanalyzed in [21].

Another way to avoid internal collisions is to impose an upper bound on the
number of tags that may be generated with a given key. If this upper bound is
large enough it does not impose restrictions in actual applications. This is the
approach we have adopted in this paper.

2.3 A Proposal for New Security Claims

We formulate a set of three orthogonal security claims that an iterative MAC
function should satisfy to be called secure.

Claim 1 The probability of success of any forgery attack not involving key re-
covery or internal collisions is 2−�m .

Claim 2 There are no key recovery attacks faster than exhaustive key search,
i.e. with an expected complexity less than 2�k−1 MAC function executions.

We model the effect of internal collisions by a third dimension parameter, the
capacity �c. The capacity is the size of the internal memory of a random map
with the same probability for internal collisions as the MAC function.

Claim 3 The probability that an internal collision occurs in a set ofA ((adaptively)
chosen message, tag) pairs, with A < 2�c/2, is not above 1− exp(−A2/2�c+1).

Note that for A < 1/4 × 2�c/2 we have 1 − exp(−A2/2�c+1) ≈ A2/2�c+1. In the
best case the capacity �c is equal to the number of bits of the state. It is up to
the designer to fix the value of the capacity �c used in the security claim.
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3 The Alred Construction

We describe here a way to construct a MAC function based on an iterated block
cipher. The key length of the resulting MAC function is equal to that of the
underlying block cipher, the length of the message must be a multiple of �w

bits, where �w is a characteristic of a component in the MAC function. In our
presentation, we use the term message word to indicate �w-bit message blocks
and call �w the word length.

3.1 Definition

The Alred construction consists of a number of steps:

1. Initialization:
(a) Initialize the state with the all-zero block.
(b) Apply the block cipher to the state.

2. Chaining: for each message word perform an iteration:
(a) Map the bits of the message word to an injection input that has the same

dimensions as a sequence of r round keys of the block cipher. We call
this mapping the injection layout.

(b) Apply a sequence of r block cipher round functions to the state, with the
injection input taking the place of the round keys.

3. Final transformation:
(a) Apply the block cipher to the state.
(b) Truncation: the tag is the first �m bits of the state.

Let the message words be denoted by xi, the state after iteration i by yi, the
key by k and the tag by z. Let f denote the iteration function, which consists of
the combination of the injection layout and the sequence of r block cipher round
functions. Then we can write:

y0 = Enck(0) (1)
yi = f(yi−1, xi), i = 1, 2, . . . , q (2)
z = Trunc(Enck(yq)) (3)

The construction is illustrated in Figure 1 for the case r = 1. With this approach,
the design of the MAC function is limited to the choice of the block cipher, the
number of rounds per iteration r, the injection layout and �m. The goal is to
choose these such that the resulting MAC function fulfills the security claims for
iterated MAC functions for some value of �m and �c near the block length.

3.2 Motivation

Prior to the chaining phase, the state is initialized to zero and it is transformed by
applying the block cipher, resulting in a state value unknown to the attacker. In
the chaining phase every iteration injects �w message bits into the state with an
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Round

Round

Round

Round
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k

Tag

Block Cipher

...

Injection Layout

Injection Layout

Injection Layout

xq Injection Layout

Truncation

Block Cipher

0

x3

x2

x1

Fig. 1. Scheme of the Alred construction with r = 1

unkeyed iteration function. Without the block cipher application in the initializa-
tion, generating an internal collision would be similar to finding a collision in an
unkeyed hash function which can be conducted without known message tag pairs.
The initial block cipher application makes the difference propagation through the
chaining phase, with its nonlinear iteration function, depend on the key.

The iteration function consists of r block cipher rounds where message word
bits are mapped onto the round key inputs. The computational efficiency of
Alred depends on the word length. Where in CBC based constructions for long
messages there is one block cipher execution per block, Alred takes merely r
rounds per word. Clearly, the performance of Alred becomes interesting if the
word length divided by r is larger than the block length divided by the number
of rounds of the block cipher.

Decreasing the message word length with respect to the round key length
makes the MAC function less efficient, but also reduces the degrees of freedom
available to an attacker to generate internal collisions (see Section 6.1 for an
example). Another way to reduce these degrees of freedom is to have the message
words first undergo a message schedule, and apply the result as round keys.
This is similar to the key schedule in a block cipher, the permutation of message
words between the rounds in MD4 [27] or the message expansion in SHA-1 [2].
However, such a message schedule also introduces need for additional memory
and additional workload per iteration. Therefore, and for reasons of simplicity,
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we decided to limit the message injection to a simple layout. Limiting the word
length and carefully choosing the injection layout allows to demonstrate powerful
upper bounds on the probability of sets of known or chosen messages with any
chosen difference leading to an internal collision.

3.3 Provability

Alred has some similarity to constructions based on block ciphers in CBC
mode. The modes typically come with security proofs that make abstraction of
the internal structure of the used cryptographic primitive. In this section we
prove that an Alred MAC function is as strong as the underlying block cipher
with respect to key recovery and, in the absence of internal collisions, is resistant
against forgery if the block cipher is resistant against ciphertext guessing.

Observation: The proofs we give are valid for any chaining phase that trans-
forms y0 into yfinal parameterized by a message. In the proofs we denote this by
yfinal = Fcf(y0,m).

Theorem 1. Every key recovery attack on Alred, requiring t (adaptively) cho-
sen messages, can be converted to a key recovery attack on the underlying block
cipher, requiring t + 1 adaptively chosen plaintexts.

Proof: Let A be an attack requiring the t tag values corresponding to the
t (adaptively) chosen messages mj , yielding the key. Then, the attack on the
underlying block cipher works as follows.

1. Request c0 = Enc(k, 0), where ‘0’ denotes the all-zero plaintext block.
2. For j = 1 to t, compute pj = Fcf(c0,mj).
3. For j = 1 to t, request cj = Enc(k, pj).
4. Input the tag values Trunc(cj) to A and obtain the key.

��
Theorem 2. Every forgery attack on Alred not involving internal collisions,
requiring t (adaptively) chosen messages, can be converted to a ciphertext guess-
ing attack on the underlying block cipher, requiring t+1 adaptively chosen plain-
texts.

Proof: Let B be an attack, not involving internal collisions, requiring the t tag
values corresponding to the t (adaptively) chosen messages mj yielding a forged
tag for the message m. Then, the ciphertext guessing attack on the underlying
block cipher works as follows.

1. Request c0 = Enc(k, 0), where ‘0’ denotes the all-zero plaintext block.
2. For j = 1 to t, compute pj = Fcf(c0,mj).
3. For j = 1 to t, request cj = Enc(k, pj).
4. Input the tag values Trunc(cj) to B and obtain the tag for the message m.
5. Compute p = Fcf(c0,m).
6. If there is a j for which p = pj , then B has generated an internal collision,

which conflicts with the requirement on B. Otherwise, input the tag values
Trunc(cj) to B and obtain the tag, yielding the truncated ciphertext of p.

��
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3.4 On the Choice of the Cipher

One may use any block cipher in the Alred construction. The block length
imposes an upper limit to the capacity �c relevant in the number of tags that
may be generated with the same key before an internal collision occurs. When
using ciphers with a block length of 64 bits as (Triple) DES and IDEA, the
number of tags generated with the same keys should be well below 232.

The use of the round function for building the iteration function restricts
the Alred construction somewhat. Ciphers that are well suited in this respect
are (Triple) DES, IDEA, Blowfish, Square, RC6, Twofish and AES. An Alred
construction based on Serpent, with its eight different rounds, would typically
have r = 8, with the iteration function consisting of the eight Serpent rounds.
MARS with its non-uniform round structure is less suited for Alred. The choice
of the injection layout is a design exercise specific for the round function of
the chosen cipher. Note that whatever the choice of the underlying cipher, the
strength of the Alred construction with respect to key search is that of the
underlying cipher.

4 On Internal Collisions in Alred

In general, any pair of message sequences, possibly of different length, that leads
to the same value of the internal state is an internal collision. We see two ap-
proaches to exploit knowledge of the iteration function to generate internal col-
lisions. The first is to generate pairs of messages of equal length that have a
difference (with respect to some group operation at the choice of the attacker)
that may result in a zero difference in the state after the difference has been
injected. We call this extinguishing differentials. The second is to insert in a
message a sequence of words that do not impact the state. We call this fixed
points.

4.1 Extinguishing Differentials

Finding high-probability extinguishing differentials is similar to differential crypt-
analysis of block ciphers. In differential cryptanalysis the trick is to find an input
difference that leads to an output difference with high probability. For an iter-
ative MAC function, the trick is to find an extinguishing differential with high
probability. Resistance against differential cryptanalysis is often cited as one of
the main criteria for the design of the round function of block ciphers. Typi-
cally the round function is designed in such a way that upper bounds can be
demonstrated on the probability of differentials over a given number of rounds.
One may design MAC functions in a similar way: design the iteration function
such that upper bounds can be demonstrated on the probability of extinguishing
differentials. In Alred the only part of the iteration function to be designed is
the injection layout. So the criterion for the choice of the injection layout is the
upper bound on the probability of extinguishing differentials.
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4.2 Fixed Points

Given a message word value xi, one may compute the number of state values that
are invariant under the iteration function yi = f(yi−1, xi), called fixed points. If
the number of fixed points is w, the probability that inserting the message word
xi in a message will not impact its tag is w × 2−n with n the block length.

We can try to find the message word value xmax with the highest number of
fixed points. If this maximum is wmax, inserting xmax in a message and assuming
that the resulting message has the same tag, is a forgery attack with success
probability wmax × 2−n. Since Claim 3 requires that this probability be smaller
than 1 − exp(−22/2�c+1) = 1 − exp(−(21−�c)) ≈ 21−�c , this imposes a limit to
the capacity: �c < n + 1− log2 wmax.

If the iteration function can be modeled as a random permutation, the num-
ber of fixed points has a Poisson distribution with λ = 1. The expected value
of wmax depends on the number of different iteration functions with a given
message word, i.e. the word length �w. For example, the expected wmax values
for 16, 32, 64 and 128 bits are 8, 12, 20 and 33 respectively. However, if r = 1,
the iteration function is just a round function of a block cipher and it may not
behave as a random function in this respect. If the round function allows it, one
may determine the number of fixed points for a number of message word values
to determine whether the Poisson distribution applies.

One may consider the number of fixed points under a sequence of g rounds.
In the random model, the expected value of wmax over all possible sequences of g
message words now is determined by the total number of messagebits injected in
the g rounds. For most round functions determining the number of fixed points
given the message word values is hard even for g = 2. However, for multiple
iterations it is very likely that the random model will hold. The value of wmax

grows with g but actually finding message word sequences with a number of fixed
points of the order wmax becomes quickly infeasible as g grows. If we consider a
sequence of iterations taking 500 message bits (for example 10 iterations taking
each 50 message bits), the expected value of wmax is 128. In conclusion, if analysis
of the iteration function confirms that the number of fixed points has a Poisson
distribution, taking �c ≤ n− 8 provides a sufficient security margin with respect
to forging using fixed points.

5 Alpha-MAC

Alpha-MAC is an Alred construction with AES [3] as underlying block cipher.
As AES, Alpha-MAC supports keys of 16, 24 and 32 bytes. Its iteration function
consists of a single round, its word length is 4 bytes and the injection layout
places these bytes in 4 byte positions of the AES state. We have chosen AES
mainly because we expect AES to be widely available thanks to its status as
a standard. Additionally, AES is efficient in hardware and software and it has
withstood intense public scrutiny very well since its publication as Rijndael [14].
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5.1 Specification

The number of rounds per iteration r is 1 and the word length �w is equal to 32
bits. The AES round function takes as argument a 16-byte round key, represented
in a 4× 4 array. The injection layout positions the 4 bytes of the message word
[q1, q2, q3, q4] in 4 positions of this array, resulting in the following injection input:⎡⎢⎢⎣

q1 0 q2 0
0 0 0 0
q3 0 q4 0
0 0 0 0

⎤⎥⎥⎦ (4)

The length of the tag �m may have any value below or equal to 128. Alpha-MAC
should satisfy the security claims for iterative MAC functions for the three key
lengths of AES with �m ≤ 128 and �c = 120. Appendix B gives and equivalent
description of Alpha-MAC.

5.2 Message Padding

Alpha-MAC is only defined for messages with a length that is a multiple of 32
bits. One may extend Alpha-MAC to message of any length by preprocessing
the message with a reversible padding scheme. We propose to use the following
padding scheme: append a single 1 followed by the minimum number of 0 bits
such that the length of the result is a multiple of 32. This corresponds to padding
method 2 in [5].

6 Internal Collisions and Injection Layout of Alpha-MAC

With respect to fixed points, we implemented a program that determines the
number of fixed points for the Alpha-MAC iteration function. It turns out
that the number of fixed points behaves as a Poisson distribution with λ = 1.
The choice of the Alpha-MAC injection was however mainly guided by the
analysis of extinguishing differentials, as we explain in the following subsections.

6.1 A Simple Attack on a Variant of Alpha-MAC

Let us consider a simple extinguishing differential for a variant of Alpha-MAC
with an injection layout mapping a 16 byte message block to a 16-byte round
key. Assume the difference in the first message word has a single active byte with
value a in position i, j (row i, column j).

– AddRoundKey (AK) injects the difference in the state giving a single active
byte with value a in the state in position i, j.

– SubBytes (SB) converts this to a single active byte in position i, j with value
b. Given a, b has 127 possible values. 126 of these values have probability
2−7 and one has probability 2−6.

– ShiftRows (SR) moves the active byte with value b to position i, � with
� = j − i mod 4.
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– MixColumns (MC) converts the single active byte to an active column, col-
umn �. The value of the single active byte completely determines the values
of bytes of the active column.

Hence a message difference with a single active byte may lead to 127 state
differences before the injection of the second message word. Of these, one has
probability 2−6 and 126 have probability 2−7. Assume now that the second
message word has a difference given by the active column that has probability
2−6. Clearly, the probability of the resulting extinguishing differential is 2−6 and
the expected number of message pairs that must be queried to obtain an internal
collision using it is 26.

We can reduce the number of required messages to query by applying a set
of n messages that have pairwise differences of the type described above. About
half of the n(n−1)/2 differences are extinguishing differentials with a probability
of 2−7 and due to the birthday paradox a set of only 20 messages are likely to
generate an internal collision.

When achieving an internal collision, the fact that the active S-box converts
difference a to b gives 6 or 7 bits of information on the absolute value of the
state. Applying this attack for all byte positions allows the reconstruction of
the state at the beginning of the iteration phase for the given key. When this is
known, generating internal collisions is easy.

In the described internal collision attack, the attacker is not hampered by the
injection layout. He has full liberty in positioning the differences in the injection
inputs. We see that the described difference leads to an internal collision if there
is a match in a single S-box: the S-box must map the difference a to difference
b. This is an extinguishing characteristic with one active S-box.

For the injection layout of Alpha-MAC this attack is not possible as it re-
quires in the second injection input a difference pattern with four active bytes
in the same column. However, attacks can be mounted with other message dif-
ference patterns. The goal of the injection layout is exactly to impose that there
are no extinguishing differentials with high probability and hence that there are
no extinguishing characteristics with a small number of active S-boxes. Together
with the implementation complexity, this has been the main criterion for the
selection of the injection layout. We will treat this in the following sections.

6.2 Choosing the Injection Layout

In order to select the injection layout we have written a program that deter-
mines the minimum number of active S-boxes over all extinguishing truncated
characteristics for a given injection layout. Truncated characteristics are clusters
of ordinary characteristics [20]. All characteristics in a cluster have intermediate
state differences with active bytes in the same positions. The probability of a
truncated characteristic is the sum of the probabilities of all its characteristics.
Similar to ordinary characteristics, the probability of a truncated characteristic
can be expressed in terms of active S-boxes, but only a subset of the S-boxes
with non-zero input difference are counted as active.
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Table 1. Number of injection layout equivalence classes

Word length (in bytes) 1 2 3 4 5

Total number of layout classes 3 21 77 252 567

with minimum extinguishing cost equal to 16 3 21 68 87 0

Our program iteratively builds a tree with the 216 possible state difference
patterns (only distinguishing between ‘zero’ and ‘non-zero’ values) as nodes. The
root is the all-zero pattern and each edge has an S-box cost and message differ-
ence pattern. The program builds the tree such that the minimum extinguishing
cost of a pattern is the sum of the S-box costs of the edges leading to the root.
It also includes the all-zero pattern as a leaf in the tree, and hence the minimum
extinguishing cost is that of this leaf. Note that for any injection layout an upper
bound for the minimum extinguishing cost is 16 as it is always possible to guess
all bits of the state at a given time.

In total there are 216 different injection layouts. With respect to this propa-
gation analysis, they are partitioned in 8548 equivalence classes:
– Thanks to the horizontal symmetry in the AES round function injection

layouts that can be mapped one to the other by means of a horizontal shift
(i, j) �→ (i, j + a mod 4) are equivalent.

– Injection layouts that can be mapped one to the other by means of a mir-
roring around (0, 0), i.e. (i, j) �→ (−i mod 4,−j mod 4), are equivalent. This
is thanks to the fact that SB and SR are invariant under this transforma-
tion and the branch number of MC, the only aspect of MC relevant in this
propagation analysis, is not modified.

The results for word lengths 5 and below are summarized in Table 1.
As Alpha-MAC requires one round function computation per message word,

the performance is proportional to message word length. Note that the minimum
extinguishing cost of an injection layout is upper bounded by those of all injection
layouts that can be formed by removing one or more of its bytes. We see that
the maximum word length for which there are injection layouts with a minimum
extinguishing cost of 16, is 4 bytes. In the choice of the injection layout from the
87 candidates we have taken into account the number of operations it takes to
apply the message word to the state. As in 32-bit implementations of AES the
columns of state and round keys are coded as 32-bit words, the number of active
columns in the injection layout is best minimized. Among the 87 layouts, 40 have
four active columns, 42 have three and 5 have two. We chose the Alpha-MAC
injection layout from the latter.

7 On Extinguishing Differentials in Alpha-MAC

We start with a result on the minimum length of an extinguishing differential.

Theorem 3. An extinguishing differential in Alpha-MAC spans at least 5
message words.
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Proof: The proof is divided into 3 steps.
Step 1: It can easily be verified that for the AES round transformation, there are
no two different round keys that result in a common round input being mapped
to a common round output. Hence, extinguishing differentials must span at least
two message words.
Step 2: There are also no extinguishing differentials spanning only 2 message
words. This can be shown as follows.

Let xi be the first message word with non-zero difference. Hence yi−1 has
no differences. The state yi can have non-zero differences in the positions (0, 0),
(0, 2), (2, 0) and (2, 2) and nowhere else. The application of SR and SB doesn’t
change this. Since MC has branch number 5, its application will result in a state
with at least 3 non-zero bytes in the first or the third column, or both. The choice
of the injection layout ensures that these differences can’t be extinguished in the
next AK step.
Step 3: We show that there are no extinguishing differentials that span 3 or 4
message words by means of an ‘impossible differential.’ The impossible differen-
tial is illustrated in Figure 2.

Let again xi be the first message word with non-zero difference. The state
yi+1 has zero differences in the second and the fourth column. At least one
of the remaining columns contains a non-zero difference, because there are no
extinguishing differentials of length 2.

Assume now that yi+3 has zero difference. This is only possible if before the
application of the step AK in iteration i + 3, the second and the fourth column
contain no zeroes. Propagating this condition backwards, we obtain that yi+2

must have zero differences in the positions (0, 1), (0, 3), (1, 0), (1, 2), (2, 1), (2, 3),
(3, 0) and (3, 1).

Since AK doesn’t act on any of these bytes, the same condition must hold on
the state before the application of AK in iteration i + 2. But then the MC step in
iteration i+2 has an input with at least 2 zeroes in each column, and an output with
at least 2 zeroes in each column, and a least one column with at least one non-zero
byte. This is impossible because the branch number of MC is 5. ��

We have the following corollary.

Corollary 1. Given yt−1, the state value before iteration t, the map

s : (xt, xt+1, xt+2, xt+3) → yt+3

from the sequence of four message words (xt, xt+1, xt+2, xt+3) to the state value
before iteration t + 4 is a bijection.

Proof: This follows directly from the fact that the number of possible message
word sequences of length four and the number of state values are equal and
that starting from a given state, any pair of such message sequences will lead to
different state values. ��

The Alpha-MAC injection layout is one of the few 4-byte injection layouts
with this property. Note that s−1(yt+3) can easily be computed, for any given
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Fig. 2. The impossible differential used in the proof of Theorem 3

yt−1. It follows that if the value of the state leaks, it becomes trivial to construct
forgeries forgeries based on internal collisions. However, we see no other methods
for obtaining the value of the state than key recovery or the generation of internal
collisions.

In the assumption that our program described in Section 6.2 is correct, its result
is a proof for the fact that the minimum extinguishing cost is 16. An analytical
proof for this minimum cost can be constructed, but is left out here because of the
space restrictions. Theminimumextinguishing cost imposes an upper bound to the
probability of a truncated characteristic of (2−6)16 = 2−96.Acloser analysis reveals
that in almost all cases an active S-box contributes a factor 2−8 rather than 2−6.
An active S-box contributes a factor 2−6 only if it was ‘activated’ by the previous
application of AK, hence, if it was passive before AK.

We have written a variant of our program taking these aspects into account,
resulting in an upper bound for the probability of truncated characteristics of
2−126. For a single extinguishing differential there can be multiple truncated
characteristics leading to an extinguishing probability that is the sum of those
of the characteristics. In our security claims we have taken a margin by claiming
�c = 120.

8 Performance

We estimate the relative performance difference between AES and Alpha-MAC.
We compare this estimate with some benchmark performance figures.
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8.1 Compared to AES

In this section we express the performance of Alpha-MAC in terms of AES
operations, more particularly, the AES key schedule and the AES encryption
operation. This allows to use AES benchmarks for software implementations on
any platform or even hardware implementations to get a pretty good idea on
the performance of Alpha-MAC. We illustrate the comparison for the case of
a Pentium processor, because it is easy to obtain figures for this platform. We
note however that in most of the security-critical applications the cryptographic
services are delivered by dedicated security modules: smart cards, HSMs, set-
top boxes, . . . These modules typically use 8-bit processors, 486 processors and
the new ones may have AES accelerators. Clearly, in this respect Alpha-MAC
takes advantage from the efficiency of AES on a wide range of platforms.

One iteration of Alpha-MAC corresponds roughly to 1 round of AES, hence
roughly 1/10 of an AES encryption. The differences are due to the following facts.
Firstly, the iteration of Alpha-MAC replaces the addition of a 16-byte round
key by the injection layout and the addition of the 4 bytes. Some implementations
of the AES recompute the round keys for every encryption. This overhead is not
present in Alpha-MAC. Finally, the last round of AES is not equal to the first
9 rounds. Using this rough approximation, we can state that MACing a message
requires:

setup: 1 AES key schedule and 1 AES encryption,
message processing: 0.1 AES encryptions per 4-byte message word,
finalization: 1 AES encryption to compute the tag.

Hence, the performance of the Alpha-MAC message processing can be esti-
mated at 0.25 × 0.1−1 = 2.5 times the performance of AES encryption, with a
fixed overhead of 1 encryption for the final tag computation. The setup overhead
can be written off over many tag computations.

8.2 On the Pentium III

A 32-bit optimized implementation of the AES round transformation implements
MC, SR and SB together by means of 16 masking operations, 12 shifts, 12 XOR
operations, and 16 table lookups. The implementation of AK requires 4 XOR
operations. The iteration function of Alpha-MAC replaces the 4 XORs by 2
masks, 2 XORs and one shift for the combination of the injection layout and
AK. If we estimate that all operations have the same cost, then the cost of
the iteration function equals 61/60 ≈ 1.02 times the cost of the AES round
transformation.

Table 2 is based on the performance figures given by the NESSIE consortium
[6]. The performance of Alpha-MAC was estimated using the NESSIE figures
for AES. We conclude that the performance of Alpha-MAC is quite good.
It outperforms HMAC/SHA-1 and CBC-MAC/AES for all message lengths.
Alpha-MAC is slower than Umac-32 but its setup time is a factor 50 shorter.
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Table 2. Performance on the Pentium III/Linux platform, as defined by NESSIE

Primitive Name message processing setup setup + finalization
(cycles/byte) (cycles) (cycles)

HMAC/MD5 7.3 804 2634
HMAC/SHA-1 15 1346 4697
CBC-MAC/AES 26 616 2056
Umac-32 2.9 54K 55K

Alpha-MAC (estimate) 10.6 1032 1448

9 Conclusions

We have proposed a set of three security claims for iterated MAC functions, ad-
dressing the issue of internal collisions. We presented a new construction method
for block cipher based MAC functions. We proved that, in the absence of internal
collisions, the security of the construction can be reduced to the security of the
underlying block cipher.

Secondly, we proposed Alpha-MAC, an efficient MAC function constructed
from AES with the method presented in the first part. We explained our de-
sign decisions and provided the results of our preliminary security analysis. The
performance of Alpha-MAC turns out to be quite competitive.
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A Detecting Internal Collisions

If the final transformation is reversible, any pair of messages with the same tag
form an internal collision. Otherwise, for two messages with the same tag, the
collision could have taken place in the final transformation itself. If the ratio
between the size of the state and the tag length is v, one can query the MAC
function for message tuples {mi‖a1,mi‖a2, . . . ,mi‖a�v�}, with the aj a set of 
v�
different strings. If we have two messages mi and mj for which all components of
the corresponding tuples have matching tags, mi and mj very probably form an
internal collision. With respect to a tag with the same length as the size of the
state, having a shorter tag only multiplies the required number of MAC function
queries by v.

B Another Way to Write Alpha-MAC

The standard [3] explains how to construct an equivalent description for the
inverse cipher of AES. We have a similar effect here. Firstly, in the definition
of f , the order of the steps SR and SB plays no role. Therefore a sequence of
applications of f can also be written as follows:

· · ·◦f ◦f ◦· · · = · · ·◦AK[LI(xi+1)]◦MC◦SB◦SR◦AK[LI(xi)]◦MC◦SB◦SR◦· · ·

Secondly, the order of the steps SR and AK can be changed, if the injection
layout is adapted accordingly:

SR ◦AK[LI(xi)] = AK[SR(LI(xi))] ◦ SR = AK[LI ′(xi)] ◦ SR.

We obtain the following:

· · ·◦f ◦f ◦· · · = · · ·◦MC◦SB◦AK[LI ′(xi)]◦SR◦MC◦SB◦AK[LI ′(xi−1)]◦SR◦· · ·

Concluding, when we ignore the boundary effects at the beginning and the end of
the message, Alpha-MAC can also be described using an alternative iteration
function f ′ and an alternative injection layout function LI ′, given by:

f ′(yi−1, xi) = (AK[LI ′(xi)] ◦ SR ◦MC ◦ SB) (yi−1)

LI ′(m) =

⎡⎢⎢⎣
q0 0 q1 0
0 0 0 0
q3 0 q2 0
0 0 0 0

⎤⎥⎥⎦ .

The alternative injection layout is equivalent to the original injection layout
applied to message words with the rightmost two bytes swapped.
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Abstract. A T-function is a mapping from n-bit words to n-bit words
in which for each 0 ≤ i < n, bit i of any output word can depend only on
bits 0, 1, . . . , i of any input word. All the boolean operations and most
of the numeric operations in modern processors are T-functions, and
all their compositions are also T-functions. Our earlier papers on the
subject dealt with “crazy” T-functions which are invertible mappings
(including Latin squares and multipermutations) or single cycle permu-
tations (which can be used as state update functions in stream ciphers).
In this paper we use the theory of T-functions to construct new types of
primitives, such as MDS mappings (which can be used as the diffusion
layers in substitution/permutation block ciphers), and self-synchronizing
hash functions (which can be used in self-synchronizing stream ciphers
or in “fuzzy” string matching applications).

1 Introduction

There are two basic approaches to the design of secret key cryptographic schemes,
which we can call “tame” and “wild”. In the tame approach we try to use only
simple primitives (such as linear mappings or LFSRs) with well understood
behavior, and try to prove mathematical theorems about their cryptographic
properties. Unfortunately, the clean mathematical structure of such schemes can
also help the cryptanalyst in his attempt to find an attack which is faster than
exhaustive search. In the wild approach we use crazy compositions of operations
(which mix a variety of domains in a non-linear and non-algebraic way), hoping
that neither the designer nor the attacker will be able to analyze the mathemati-
cal behavior of the scheme. The first approach is typically preferred in textbooks
and toy schemes, but real world designs often use the second approach.

In several papers published in the last few years [4, 5, 6] we tried to bridge this
gap by considering “semi-wild” constructions, which look like crazy combinations
of boolean and arithmetic operations, but have many analyzable mathematical
properties. In particular, in these papers we defined the class of T-functions
which contains arbitrary compositions of plus, minus, times, and, or, and xor
operations on n-bit words, and showed that it is easy to analyze their invertibility
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and cycle structure for arbitrary word sizes. This led to the efficient construction
of multipermutations and stream ciphers. In this paper we explore additional ap-
plications of the theory of T-functions, which do not depend on their invertibility
or cycle structure. In particular, we develop new classes of MDS mappings for
block ciphers and hash functions, self-synchronizing stream ciphers, and self-
synchronizing hash functions which can be used in “fuzzy” string matching to
compare strings with a relatively large edit distance.

2 Basic Definitions

Let us first introduce our notation. We denote the set {0, 1} by B. We denote
by [x]i bit number i of word x (with [x]0 being the least significant bit). We
use the same symbol x to denote the n-bit vector ([x]n−1, . . . , [x]0) ∈ B

n and an
integer modulo 2n, with the usual conversion rule: x←→

∑n−1
i=0 2i[x]i.

A collection of m n-bit numbers is described either as a column vector of
values or as an m × n bit matrix x. We start numbering its rows and columns
from zero, and refer to its i-th row xi−1,� as xi−1 and to its j-th column x�,j−1

as [x]j−1.
The basic operations we allow in our mappings are the following primitive

operations: “+”, “−”, “×” (addition, subtraction, and multiplication modulo 2n),
“∨”, “∧”, and “⊕” (bitwise or, and, and xor on n-bit words). Note that left shift
is allowed (since it is equivalent to multiplication by a power of two), but right
shift and circular rotations are not included in this definition, even though they
are available as basic machine instructions in most microprocessors. It does not
mean that we exclude them from further consideration, we just want to use them
in a more restricted way.

Definition 1 (T-function). A function f from B
m×n to B

l×n is called a T-
function if the k-th column of the output [f(x)]k−1 depends only on the first k
columns of the input [x]k−1, . . . , [x]0 :

[f(x)]0 = f0([x]0),
[f(x)]1 = f1([x]0, [x]1),
[f(x)]2 = f2([x]0, [x]1, [x]2),

...
[f(x)]n−1 = fn−1([x]0, . . . , [x]n−2, [x]n−1).

(1)

The name is due to the Triangular form of (1). It turns out that T-functions
are very common since any combination of constants, variables, and primitive
operations is a T-function.

Definition 2. A T-function is called a parameter (and denoted by a Greek letter
such as α) if each bit-slice function fi does not depend on [x]i.

If T-functions can be viewed as triangular matrices, then parameters can
be viewed as triangular matrices with zeroes on the diagonal (note that these
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functions are typically non-linear, and thus the matrix form is a visualization
metaphor rather than an actual definition). The name “parameter” usually refers
to some unspecified constant in an expression, and in this context we use it to
denote that in many applications it suffices to analyze the dependence of a bit-
slice of the output [f(x)]i only on the current bit-slice of the input [x]i, and to
consider the effect of all the previous bit-slices of the input (e.g., in the form of
addition or multiplication carries) as unspecified values.

Given an arbitrary expression with primitive operations, we can recursively
apply the following rules to produce a simple representation of its bit-slice map-
pings using such unspecified parameters. Note that in this representation we
only have to distinguish between the least significant bit-slice and all the other
bit-slices, regardless of the word length n:

Theorem 1. For i > 0 the following equalities hold

[x× y]0 = [x]0 ∧ [y]0,
[x± y]0 = [x]0 ⊕ [y]0,
[x⊕ y]0 = [x]0 ⊕ [y]0,
[x ∧

∨ y]0 = [x]0
∧
∨ [y]0,

[x× y]i = [x]iα[y]0
⊕ α[x]0

[y]i ⊕ αxy,
[x± y]i = [x]i ⊕ [y]i ⊕ αx±y,
[x⊕ y]i = [x]i ⊕ [y]i,
[x ∧

∨ y]i = [x]i
∧
∨ [y]i,

(2)

where the unspecified parameters α’s denote the dependence of the subscripted
operation on previous bit-slices.

Consider, for example, the following mapping: x→ x + (x2 ∨ 5).[
x + (x2 ∨ 5)

]
0

= [x]0 ⊕
[
x2 ∨ 5
]
0

= [x]0 ⊕
([

x2
]
0
∨ [5]0
)

= [x]0 ⊕ 1

and, for i > 0,[
x + (x2 ∨ 5)

]
i
= [x]i⊕

[
x2 ∨ 5
]
i
⊕αx+(x2∨5) = [x]i⊕

([
x2
]
i
∨ [5]i
)
⊕αx+(x2∨5)

= [x]i ⊕ ([x]iα[x]0
⊕ α[x]0

[x]i ⊕ αx2) ∨ [5]i ⊕ αx+(x2∨5)

= [x]i ⊕ αx2 ∨ [5]i ⊕ αx+(x2∨5) = [x]i ⊕ α.

This mapping is clearly invertible since we can uniquely recover the consecutive
bit-slices of the input (from LSB to MSB) from the given bit-slices of the output.
A summary of the simplest recursive constructions of parameters can be found
in Figure 1 at the end of the paper.

3 A New Class of MDS Mappings

In this section we consider the efficient construction of new types of MDS map-
pings, which are a fundamental building block in the construction of many block
ciphers. Unlike all the previous constructions, our mappings are non-linear and
non-algebraic, and thus they can provide enhanced protection against differential
and linear attacks.
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Let X be a finite set and φ be an invertible mapping on m-tuples of val-
ues from X (φ : Xm → Xm). Let y = φ(x) and y′ = φ(x′), where x =
(x0, . . . , xm−1)T , y = (y0, . . . , ym−1)T , and, similarly, x′ = (x′

0, . . . , x
′
m−1)

T ,
y′ = (y′

0, . . . , y
′
m−1)

T , and x �= x′. Let dx be the number of i’s such that
xi �= x′

i, and, similarly, let dy be the number of differences between y and y′. Let
Dφ = minx,x′(dx + dy). Since dy ≤ m and dx can be equal to 1 it follows that
Dφ ≤ m + 1 for arbitrary φ.

Definition 3. A mapping φ is called Maximum Distance Separable (MDS) if
Dφ = m + 1.1

If we use φ as a diffusion layer in a Substitution Permutation2 encryption
Network (SPN),3 then every differential [1] or linear [7] characteristic has at least
Dφ active S-boxes in each pair of consecutive layers of the network. Using this
property we can demonstrate resistance to differential and linear cryptanalysis,
because in combination with the probability bounds on a single S-box it provides
an upper bound on the probability of any differential or linear characteristic.
Consequently, MDS mappings are used in many modern block cipher designs
including AES [3].

Common constructions of MDS mappings use linear algebra over the finite
field GF (2n). This makes the analysis easier, but has the undesirable side effect
that a linear diffusion layer by itself is “transparent” (i.e., has transition proba-
bility of 1) to differential and linear attacks. If we could use a “non-transparent”
MDS diffusion layer we would simultaneously achieve two goals by spending the
same computational effort—forcing many S-boxes to be active and further re-
ducing the upper bound on the probability of characteristics in each diffusion
layer.

One way to construct a linear MDS mapping over a finite field is to use the
following method. Let

W(a0, . . . , am−1) =

⎛⎜⎜⎜⎝
1 a0 a2

0 . . . am−1
0

1 a1 a2
1 . . . am−1

1
...

...
...

. . .
...

1 am−1 a2
m−1 . . . am−1

m−1

⎞⎟⎟⎟⎠ .

It is known that if all the ai are distinct then this matrix is non-singular. Consider
the following mapping

x→ y = W(a0, . . . , am−1)W−1(am, . . . , a2m−1)x.

1 In our definition φ can be an arbitrary mapping, even though the name MDS usually
relates to linear mappings or error correcting codes. The alternative definition which
counts the number of non-zero entries in a single input/output pair is applicable only
to linear codes.

2 Note that the name “permutation” here is due to the historical tradition since mod-
ern designs use for diffusion not a bit permutation (as, e.g., in DES) but a general
linear or affine transformation (as, e.g., in AES).

3 Alternatively φ can be used as a diffusion layer in a Feistel construction. Note that
in this case φ need not to be calculated backwards even during decryption.
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Let us show that if all the ai’s are distinct then this mapping is MDS. Let

p = W−1(am, . . . , a2m−1)x.

If we consider p as the vector of the coefficients of a polynomial then

xi = p0 + p1am+i + p2a
2
m+i + · · · + pm−1a

m−1
m+i = p(ai+m),

yi = p0 + p1ai + p2a
2
i + . . . + pm−1a

m−1
i = p(ai).

The number of common values c of two distinct polynomials (p and p′, defined
by the two sets of input/output values) of degree m − 1 is at most m − 1 and
thus the number of unequal pairs of primed and non-primed values among all
the inputs and outputs satisfies

d = dx + dy = 2m− c ≥ m + 1.

Consider an example in F23 (modulo b = 10112 = t3 + t + 1):

W(1, 2, 3)×W−1(4, 5, 6) =

⎛⎝1 1 1
1 2 4
1 3 5

⎞⎠×
⎛⎝4 3 6
4 7 3
5 6 3

⎞⎠ =

⎛⎝5 2 6
5 3 7
4 2 7

⎞⎠ . (3)

Notice that this mapping uses multiplication in a finite field. We prefer
to use arithmetic modulo 2n, which is much more efficient in software imple-
mentations on modern microprocessors, and would also like to mix arithmetic
and boolean operations in order to make cryptanalysis harder. The general T-
function methodology in such cases can be summarized as follows:

1. Find a skeleton bitwise mapping from 1-bit inputs to 1-bit outputs which
has the desired property (e.g., invertibility).

2. Extend the mapping in a natural way to n-bit words.
3. Add some parameters in order to obtain a larger class of mappings with the

same bit-slice properties, and to provide some inter–bit-slice mixing.
4. Change some ⊕ operations to plus or minus, using the fact that they have

the same bit-slice mappings (up to the exact definition of some parameters).

Let us apply this T-function methodology to the construction of an MDS
mapping with m = 3 input words. First of all, we have to represent xi as a bit
vector (xi,u, xi,v, xi,w) and represent (3) as a mapping of bits:

y0,u = (x0,w) ⊕ (x1,v) ⊕ (x2,v ⊕ x2,u ⊕ x2,w),
y0,v = (x0,u) ⊕ (x1,u ⊕ x1,w) ⊕ (x2,w ⊕ x2,v),
y0,w = (x0,w ⊕ x0,v) ⊕ (x1,u) ⊕ (x2,u ⊕ x2,v),
y1,u = (x0,w) ⊕ (x1,u ⊕ x1,v) ⊕ (x2,v ⊕ x2,w),
y1,v = (x0,u) ⊕ (x1,v ⊕ x1,u ⊕ x1,w) ⊕ (x2,w),
y1,w = (x0,w ⊕ x0,v) ⊕ (x1,w ⊕ x1,u) ⊕ (x2,w ⊕ x2,u ⊕ x2,v),
y2,u = (x0,u ⊕ x0,w) ⊕ (x1,v) ⊕ (x2,v ⊕ x2,w),
y2,v = (x0,u ⊕ x0,v) ⊕ (x1,u ⊕ x1,w) ⊕ (x2,w),
y2,w = (x0,v) ⊕ (x1,u) ⊕ (x2,w ⊕ x2,u ⊕ x2,v).
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Note that multiplication in our field works as follows:

(xi,u, xi,v, xi,w)× 1 = (xi,u, xi,v, xi,w ),
(xi,u, xi,v, xi,w)× 2 = (xi,v, xi,w ⊕ xi,u, xi,u ),
(xi,u, xi,v, xi,w)× 4 = (xi,w ⊕ xi,u, xi,u ⊕ xi,v, xi,v ).

So, for example, to get the topmost-leftmost block we calculate

5x0 = 1x0 ⊕ 4x0 =

⎛⎝ x0,u ⊕ (x0,w ⊕ x0,u)
x0,v ⊕ (x0,u ⊕ x0,v)
x0,w ⊕ x0,v

⎞⎠ =

⎛⎝ x0,w

x0,u

x0,w ⊕ x0,v

⎞⎠ .

Let us now consider each xi,· and yi,· not as a single-bit variable but as a whole
n-bit word, so each xi and yi is now of length 3n. Suppose that for (x0, . . . , xm)T

and (x′
0, . . . , x

′
m)T the number of differences dx = D > 0, that is there are D

values of i such that xi �= x′
i. It follows that in each bit-slice d[x]j

≤ D and so,
since at least one bit-slice was changed and the bit-slice mapping⎛⎜⎝ [x0]j

...
[xm−1]j

⎞⎟⎠→
⎛⎜⎝ [y0]j

...
[ym−1]j

⎞⎟⎠
is MDS, it follows that d[y]j

≥ m + 1 − D, and thus dy ≥ m + 1 − D, that is
dx + dy ≥ m + 1, and thus the whole mapping x→ y is also MDS.

Our next goal is to introduce arbitrary parameters in order to define a much
larger class of mappings. Note that if⎛⎜⎝ x0

...
xm−1

⎞⎟⎠→
⎛⎜⎝ y0

...
ym−1

⎞⎟⎠ is MDS then

⎛⎜⎝ x0

...
xm−1

⎞⎟⎠→
⎛⎜⎝ φ0(y0)

...
φm−1(ym−1)

⎞⎟⎠ ,

where the φi’s are any invertible mappings, is also MDS. Since φ : x → x ⊕ α
is an invertible mapping it follows that the introduction of additive parameters
preserves the MDS property of bit-slices. Consequently, we can replace some
“⊕”s with “+”s or “−”s, and add arbitrary parameters in order to obtain the
following “crazier” mapping which is also provably MDS:

y0,u = x0,w − (x1,v ⊕ x2,v) + (x2,u ⊕ x2,w) ⊕ 2x0,ux1,v,
y0,v = (x0,u + x1,u − (x1,w ⊕ x2,w))⊕ x2,v ⊕ 2x0,vx1,w,
y0,w = x0,w ⊕ (x0,v + x1,u)⊕ x2,u ⊕ x2,v ⊕ 2x0,wx2,u,

y1,u = x0,w + (x1,u ⊕ x1,v ⊕ x2,v) + x2,w ⊕ 2x1,ux2,v,
y1,v = x0,u ⊕ (x1,v + x1,u − x1,w)⊕ x2,w ⊕ 2x1,vx2,w,
y1,w = (x0,w − x0,v − x1,w)⊕ x1,u ⊕ (x2,w − (x2,u ⊕ x2,v)) ⊕ 2x1,wx0,u,

y2,u = x0,u ⊕ (x0,w + x1,v + x2,v)⊕ x2,w ⊕ 2x2,ux0,v,
y2,v = x0,u − x0,v + (x1,u ⊕ x1,w ⊕ x2,w) ⊕ 2x2,vx0,w,
y2,w = (x0,v + x1,u ⊕ x2,w)− (x2,u ⊕ x2,v) ⊕ 2x2,wx1,u.
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This mapping allows us to intermix 3 S-boxes of 3n bits each. It is possible to
construct a similar mapping which allows us to intermix m S-boxes of ln bits
each as long as 2m ≤ 2l, since in this case F2l contains 2m different elements. In
the above example m = l = 3, and so the block size is mln = 576 bits for n = 64,
and the size of each S-box is ln = 192 bits. Although in some applications (e.g.,
hash functions or stream ciphers) this is not a limitation, in others (e.g., block
ciphers) such long blocks can be a problem. Note that for embedded low-end
devices n = 8 and so the above example is too small (mln = 72 and ln = 24),
but if we use larger parameters, such as l = 4 and m ≤ 8 in a 128-bit block
cipher, we can intermix, for example, the outputs of four 32-bit S-boxes by an
MDS mapping.

4 Simpler Mappings Which Are Almost MDS

The constructions in the previous section were somewhat complicated and did
not have ideal parameter sizes (even if we take into account a slight improvement
described in the appendix). The source of the problem was that a non-trivial
linear mapping cannot be MDS modulo 2 and thus it is provably impossible to
have l = 1 and m > 1. Fortunately, we can use much simpler functions which
are almost MDS, and which are almost as useful as actual MDS functions in
cryptographic applications.

Define a mapping as an almost MDS mapping if dx+dy ≥ m. Such a diffusion
layer guarantees that at least m (instead of m + 1) S-boxes are active in any
pair of consecutive layers in a substitution permutation network, and thus in
many block cipher designs they provide almost the same upper bound on the
probability of the cipher’s differential and linear characteristics.

Let us construct an almost MDS mapping with conveniently sized parameters.
As usual we start with a skeleton of the bit-slices. In this case we use the simple
skeleton: ⎛⎜⎜⎝

y0

y1

y2

y3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎠×
⎛⎜⎜⎝

x0

x1

x2

x3

⎞⎟⎟⎠+

⎛⎜⎜⎝
α0

α1

α2

α3

⎞⎟⎟⎠ ,

where the αi are arbitrary constants. It is easy to check that dx + dy ≥ 4.
Using this skeleton and replacing the constants αi by simple parameters we can
construct, for example, the following non-linear almost MDS mapping:

y0 = x1 + (x2 ⊕ x3)(2x0 + 1),
y1 = x2 + (x3 ⊕ x0)(2x1 + 1),
y2 = x3 + (x0 ⊕ x1)(2x2 + 1),
y3 = x0 + (x1 ⊕ x2)(2x3 + 1).

This mapping can diffuse the outputs of four S-boxes of arbitrary sizes (e.g., 32-
bit to 32-bit computed S-boxes in a 128-bit block cipher) in a way that guarantees
that at least 4 S-boxes are active in any pair of consecutive layers. A similar
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construction can be used to diffuse a higher number of smaller (computed or
stored) S-boxes in other designs.

An interesting application of this mapping is to enhance the security of SHA-
1 against the recently announced collision attacks. The first step in SHA-1 is to
linearly expand the 16 input words into 80 output words. The linearity of this
process makes it easy to search for low Hamming weight differential patterns
in the output words without committing to actual input values. We propose
to replace the linear expansion by the following process: Arrange the 16 input
words in a 4 × 4 array, and alternately apply our 4-word nonlinear mapping
to its rows and columns. This is similar to the AES encryption process, but
without keys and S-boxes, and using 32-bit words rather than bytes as array
elements. Each application produces a new batch of 16 output words, and thus
two row mixings and two column mixings suffice to expand the 16 input words
into 80 output words. To enhance the mixing of the weak LSBs in T-functions,
we propose to cyclically rotate each generated word by a variable number of bits.
The nonlinearity of the mapping makes it difficult to predict the evolution of
differential patterns, the MDS property provides lower bounds on their Hamming
weights, and thus the modified SHA-1 offers greatly enhanced protection against
the new attacks.

5 Self-synchronizing Functions

In this section we propose several novel applications of T-functions which are
based on the observation that the iterated application of a parameter slowly
“forgets” its distant history in the same way that a triangular matrix with zeroes
on the diagonal converges to the zero matrix when raised to a sufficiently high
power. Let us start with the following definition:

Definition 4 (SSF). Let
{
c(i)
}

i=0,...
and
{
ĉ(i)
}

i=0,...
be two input sequences,

let s(0) and ŝ(0) be two initial states, and let K be a common key. Assume that
the function U is used to update the state based on the current input and the key:
s(i+1) = U(s(i), c(i),K) and ŝ(i+1) = U(ŝ(i), ĉ(i),K). The function U is called a
self-synchronizing function (SSF) if equality of any k consecutive inputs implies
the equality of the next state, where k is some integer:

c(i) = ĉ(i), . . . , c(i+k−1) = ĉ(i+k−1) =⇒ s(i+k) = ŝ(i+k).

Let us now show why the T-function methodology is ideally suited to the
construction of SSFs:

Theorem 2. Let the T-function U(s, c,K) be a parameter with respect to the
state s and an arbitrary function of the input c and the key K:

[U(s, c,K)]i = fi([s]0,...,i−1, [c]0,...,n−1,K),

then U is an SSF.
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Proof. To prove the theorem it is enough to note that bit number i of s(t) can
depend only on

(
[
s(t−1)
]
0,...,i−1

, c(t−1),K),

that, in turn, can depend only on

(
[
s(t−2)
]
0,...,i−2

, c(t−1), c(t−2),K),

. . . that, in turn, can depend only on

(
[
s(t−i)
]
0
, c(t−1), . . . , c(t−i),K),

and, finally, this can depend only on

(c(t−1), . . . , c(t−i−1),K).

So if all the calculations are done modulo 2n, s(t) can depend on c(t−1), . . . , c(t−n),
but cannot depend on any earlier input.

By using the parameters described in Figure 1 it is easy to construct a large
variety of SSFs, for example, U(s, c,K) = 2s ⊕ cK or U(s, c,K) = ((s ⊕K)2 ∨
1) + c. In different applications it may be important to have different k values
(representing the number of steps needed to resynchronize). Our constructions
seem to be limited to k = n steps (using n2 input bits), where n is the word-size of
the processor (usually, n = 32 or n = 64). However, it is easy to enlarge or shrink
the size of the effective region by adjusting the size of c used in each iteration.
For example, on a 64-bit processor the above construction has an effective region
of size 212 bits, using one byte of c in each iteration we can reduce it down to 29,
or enlarge it up to 215 if we use eight 64-bit words at a time. Alternatively, to
avoid performance penalties, we can use U(s, c,K) which is a multiple parameter
with respect to s:

[U(s, c,K)]i = fi([s]0,...,i−p, [c]0,...,n−1),

where p is some integer. For such function s(t) depends only on c(t−1), . . . , c(t−n
p ).

For example, U(s, c,K) = ((s � 8)⊕ c)× (c∨ 1), where a � b denotes left shift of
a by b bit positions, depends only on eight (64

8 = 8) previous c’s.
SSFs have many applications including cryptography, fast methods for bring-

ing remote files into sync, finding duplications on the web, et cetera. Let us now
describe those applications in more detail.

Self-synchronizing stream ciphers allow parties to continue their communica-
tion even if they temporarily lose synchronization: after processing k additional
ciphertexts the receiver automatically resynchronizes it state with the sender.
The standard way to achieve this is to create a state which is the concatenation
of the last k ciphertext symbols, and to compute the next pseudo random value
as the keyed hash of this state. However, in stream cipher construction speed is
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extremely important, and thus the active maintenance of such a concatenation
(adding the newest input, deleting the oldest input, and shifting the other in-
puts) wastes precious cycles. In addition, the opponent always knows and can
sometimes manipulate this state, and thus the hash function has to be relatively
strong (and thus relatively slow) in order to withstand cryptanalysis. We propose
to combine the state maintenance and the hash operation (and thus eliminate
the computational overhead of the state maintenance) by applying a mapping
which is a parameter with respect to the state and an arbitrary function with
respect to the ciphertext and secret key. This keeps the current state secret, and
allows us to use a potentially weaker hash function to produce the next output.
More formally, let

{
p(i)
}

i=0,...
denote the plaintext, K denote the secret key,{

s(i)
}

i=0,...
denote the internal state, and I denote the initialization function.

The state is initially set to s(0) = I(K), and then it evolves over time by an
SSF update operation U : s(i+1) = U(s(i), c(i),K), where

{
c(i)
}

i=0,...
denotes the

ciphertext which is produced using an output function O: c(i) = p(i)⊕O(s(i),K).
The actual construction of a secure self-synchronizing stream cipher requires

great care. Unlike PRNG, where the known-plaintext attack is usually the only
one to be considered, there are many reasonable attacks on a self-synchronizing
stream cipher:
– known plaintext attack,
– chosen plaintext attack,
– chosen ciphertext attack, and probably even
– related key attack.

To avoid some of these attacks, it is recommended to use a nonce in the initial-
ization process to make sure that the opponent cannot restart the stream cipher
in the same state.

In this paper we propose a general methodology for the construction of
cryptographic primitives rather than fully specified schemes, but let us give
one concrete example in order to demonstrate our ideas and encourage further
research on the new approach. Let the state s consist of three 64-bit words:
s = (s0, s1, s2)T . At each iteration, we would like to output a 64-bit pseudo
random value which can be xored with the next plaintext to produce the next
ciphertext. Since in the T-function–based constructions the LSBs are usually
weaker than the MSBs, the proposed output function swaps the high and low
halves:

O(s0, s1, s2) = ((s0 ⊕ s2 ⊕KO) � 32)× ((s1 ⊕K ′
O) � 32) ∨ 1),

where a � b denotes circular left shift of a by b bit positions. The state is
updated by the following function:⎛⎝s0

s1

s2

⎞⎠→
⎛⎝ (((s′1 ⊕ s′2) ∨ 1)⊕K0)2

(((s′0 ⊕ s′2) ∨ 1)⊕K1)2

(((s′0 ⊕ s′1) ∨ 1)⊕K2)2

⎞⎠ ,

where s′0 = s0 + c, s′1 = s1 − (c � 21), and s′2 = s2 ⊕ (c � 21). The best attack
we are aware of against this particular example requires O(296) time.
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Let us now consider some non-cryptographic applications of self-synchronizing
functions. Suppose that we want to update a file on one machine (receiver) to
be identical to a similar file on another machine (sender) and we assume that
the two machines are connected by a low-bandwidth high-latency bidirectional
communications link. The simplest solution is to break the file into blocks, and
to send across the hashed value of each block in order to identify (and then
correct) mismatches. However, if one of the two files has a single missing (or
added) character, then all the blocks from that point onwards will have different
hash values due to framing errors. The rsync algorithm [8] allows two parties
to find and recover from such framing errors by asking one party to send the
hash values of all the non-overlapping k-symbol blocks, and asking the other
party to compare them to the locally computed hash values of all the possible
k-symbol blocks (at any offset, not just at locations which are multiples of k).
To get the fastest possible speed in such a comparison, we can again eliminate
the block maintenance overhead by using a single pass SSF computation which
repeatedly updates its internal state with the next character and compares the
result to the hash values received from the other party. Such an incremental
hash computation can overcome framing errors by automatically forgetting its
distant history.

Self-synchronizing functions are also useful in “fuzzy” string matching appli-
cations, in which we would like to determine if two documents are sufficiently
similar, even though they can have a relatively large edit distance (of changed,
added, deleted or rearranged words). Computing the edit distance between two
documents is very expensive, and finding a pair of similar documents in a large
collection is even harder. To overcome this difficulty, Broder et al. [2] introduced
the following notion of resemblance of two documents A and B:

r(A,B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)| ,

where S(·) denotes the set of all the overlapping word k-grams (called shingles)
of a document, and | · | denotes the size of a set. It was suggested [2] that a
good estimate of this resemblance can be obtained by computing the set of hash
values of all the shingles in each document, reducing each set into a small num-
ber of representative values (such as the hash values which are closest to several
dozen particular target values), and then computing the similarity expression
above for just the representative values. Since each document can be indepen-
dently summarized, we get a linear rather than a quadratic algorithm for finding
similar pairs of documents in a large collection. In web applications, this makes
it possible to analyze the structure of the web, to reduce the size of its cached
copies, to find popular documents, or to identify copyright violations.

Notice that the notion of the adversary in the non-cryptographic applications
of SSFs is rather limited, and thus we are not bothered by some of the inherent
limitations of any such similarity checking procedure for web documents. For
example, there are many ways to trick a web crawler into “thinking” that your
arbitrary document is similar to a totally different document, or that very similar
documents are quite different. The techniques range from checking the IP address
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of the tester (returning to the crawler a different page than to other users), to
creating web pages in such a way that after the execution of JavaScript it
displays the text on the screen in a completely different way than the raw text
which is “seen” by a crawler. Thus it seems that we should not over-design the
application to withstand sophisticated attacks against it, and just make sure
that the hashed values are random looking and reasonably unpredictable when
we use a secret key K in the initialization and state update functions.
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Smaller MDS Mappings

In Section 3 we considered MDS mappings which allow us to intermix m S-
boxes of ln bits each as long as 2m ≤ 2l. In order to study if this inequality is
an essential condition or just an artifact of that skeleton construction method
let us first consider the following question: is it possible to construct an MDS
T-function such that l = 1 and m > 1. The following reasoning shows that it is
impossible. Suppose that we constructed such an MDS T-function θ. Let

x = (0, 0, 0, . . . 0)T ,
x′ = (2n−1, 0, 0, . . . 0)T ,
x′′ = (0, 2n−1, 0, . . . 0)T ,

and θ maps them into y, y′, and y′′ respectively. Since x = x′ = x′′ (mod 2n−1)
and θ is a T-function it follows that y = y′ = y′′ (mod 2n−1). So the only
difference between y, y′, and y′′ is in the most significant bit. Our mapping θ is
an MDS and dx,x′ = 1 so dy,y′ ≥ m and thus the most significant bit in y′

i is the
inverse of yi:

∀i, [y′
i]m−1 = [yi]m−1.
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For the same reason
∀i, [y′′

i ]m−1 = [yi]m−1,

and so y′ = y′′ which is a contradiction because any MDS mapping has to be
invertible.

Although the algorithm which uses finite field arithmetic does not allow us
to construct a mapping intermixing three S-boxes such that each one of them
consists of fewer than three words (m = 3 and l < 3), it is possible to construct
such a mapping using a different algorithm. Since we already know that the case
of m = 3 and l = 1 is impossible let us try to construct an MDS mapping with
m = 3 and l = 2. To do it we need a skeleton for bit-slices that is an MDS
mapping

ψ : B
2 × B

2 × B
2 → B

2 × B
2 × B

2.

Using a computer search we found the following mapping:4

00� → 000 111 222 333 01� → 123 032 301 210 02� → 231 320 013 102 03� → 312 203 130 021
10� → 132 023 310 201 11� → 011 100 233 322 12� → 303 212 121 030 13� → 220 331 002 113
20� → 213 302 031 120 21� → 330 221 112 003 22� → 022 133 200 311 23� → 101 010 323 232
30� → 321 230 103 012 31� → 202 313 020 131 32� → 110 001 332 223 33� → 033 122 211 300

Interestingly, this mapping is linear:⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0,u

x0,v

x1,u

x1,v

x2,u

x2,v

⎞⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0
0 1 0 1 0 1

0 1 1 1 1 0
1 1 1 0 0 1

1 1 0 1 1 0
1 0 1 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0,u

x0,v

x1,u

x1,v

x2,u

x2,v

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Using it as a skeleton we can construct, for example, the following “crazy” map-
ping: ⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0,u

x0,v

x1,u

x1,v

x2,u

x2,v

⎞⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0,u + (x1,u ⊕ x2,u)(2x0,vx1,v + 1)
x0,v − x1,v + x2,v ⊕ ((x0,u ⊕ x1,u)2 ∨ 1)

(x0,v ⊕ x1,u)(2x0,vx2,v − 1)− x1,v + x2,u

(x0,u + x0,v)⊕ (x1,u − x2,v)((x1,v ⊕ x2,u)2 ∨ 1)

(x0,u − x0,v)(2x1,ux2,v + 1) + x1,v ⊕ x2,u

(x0,u ⊕ x1,u)− (x1,v ⊕ x2,v) + ((x0,v ⊕ x2,u)2 ∨ 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

4 This notation means that

(x0 = 0, x1 = 0, x2 = 0) �→ (y0 = 0, y1 = 0, y2 = 0),
...

(x0 = 3, x1 = 3, x2 = 3) �→ (y0 = 3, y1 = 0, y2 = 0).
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Formal representation Examples
P:
C 3
E × E (x + 5)2

P0 2x
(P ± E) ⊕ E (5 + x) ⊕ x
P ′ ◦ P ′′ x2 + 2x

P0:
C0 2
C0 × E 2(x3 ∧ x)
P ∧ C0 x2 ∧ 1 . . . 102

P0 × P (x2 ∧ 1 . . . 102)((5 + x) ⊕ x)
P ′

0 ◦ P ′′
0 2x − (x2 ∧ 1 . . . 102)

C constant
P parameter
E expression
C0 constant with 0 in the least significant bit
P0 parameter with 0 in the least significant bit
◦ primitive operation

This table summarize techniques most commonly used to construct parame-
ters. Note that in a single line the same symbol denotes the same expression
(e.g., E × E denotes squaring). Keep in mind that expressions obtained by
means of this table are not necessary parameters in the least significant bit-
slice (clearly, P0 are parameters everywhere).

Fig. 1. Common parameter construction techniques
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Abstract. Poly1305-AES is a state-of-the-art message-authentication
code suitable for a wide variety of applications. Poly1305-AES computes
a 16-byte authenticator of a variable-length message, using a 16-byte
AES key, a 16-byte additional key, and a 16-byte nonce. The security of
Poly1305-AES is very close to the security of AES; the security gap is
at most 14D�L/16	/2106 if messages have at most L bytes, the attacker
sees at most 264 authenticated messages, and the attacker attempts D
forgeries. Poly1305-AES can be computed at extremely high speed: for
example, fewer than 3.1� + 780 Athlon cycles for an �-byte message.
This speed is achieved without precomputation; consequently, 1000 keys
can be handled simultaneously without cache misses. Special-purpose
hardware can compute Poly1305-AES at even higher speed. Poly1305-
AES is parallelizable, incremental, and not subject to any intellectual-
property claims.

1 Introduction

This paper introduces and analyzes Poly1305-AES, a state-of-the-art secret-key
message-authentication code suitable for a wide variety of applications.

Poly1305-AES computes a 16-byte authenticator Poly1305r(m,AESk(n)) of
a variable-length message m, using a 16-byte AES key k, a 16-byte additional
key r, and a 16-byte nonce n. Section 2 of this paper presents the complete
definition of Poly1305-AES.

Poly1305-AES has several useful features:

• Guaranteed security if AES is secure. The security gap is small, even
for long-term keys; the only way for an attacker to break Poly1305-AES is
to break AES. Assume, for example, that messages are packets up to 1024
bytes; that the attacker sees 264 messages authenticated under a Poly1305-
AES key; that the attacker attempts a whopping 275 forgeries; and that the
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attacker cannot break AES with probability above δ. Then, with probability
at least 0.999999− δ, all of the 275 forgeries are rejected.

• Cipher replaceability. If anything does go wrong with AES, users can
switch from Poly1305-AES to Poly1305-AnotherFunction, with an identical
security guarantee. All the effort invested in the non-AES part of Poly1305-
AES can be reused; the non-AES part of Poly1305-AES cannot be broken.

• Extremely high speed. My published Poly1305-AES software takes just
3843 Athlon cycles, 5361 Pentium III cycles, 5464 Pentium 4 cycles, 4611
Pentium M cycles, 8464 PowerPC 7410 cycles, 5905 PowerPC RS64 IV cycles,
5118 UltraSPARC II cycles, or 5601 UltraSPARC III cycles to verify an
authenticator on a 1024-byte message. Poly1305-AES offers consistent high
speed, not just high speed for one CPU.

• Low per-message overhead. The same software takes just 1232 Pentium
4 cycles, 1264 PowerPC 7410 cycles, or 1077 UltraSPARC III cycles to verify
an authenticator on a 64-byte message. Poly1305-AES offers consistent high
speed, not just high speed for long messages. Most competing functions have
much larger overhead for each message; they are designed for long messages,
without regard to short-packet performance.

• Key agility. Poly1305-AES offers consistent high speed, not just high speed
for single-key benchmarks. The timings in this paper do not rely on any pre-
expansion of the 32-byte Poly1305-AES key (k, r); Poly1305-AES can fit
thousands of simultaneous keys into cache, and remains fast even when keys
are out of cache. This was my primary design goal for Poly1305-AES. Almost
all competing functions use a large table for each key; as the number of keys
grows, those functions miss the cache and slow down dramatically.

• Parallelizability and incrementality. The circuit depth of Poly1305-AES
is quite small, even for long messages. Consequently, Poly1305-AES can take
advantage of additional hardware to reduce the latency for long messages.
For essentially the same reason, Poly1305-AES can be recomputed at low
cost for a small modification of a long message.

• No intellectual-property claims. I am not aware of any patents or patent
applications relevant to Poly1305-AES.

Section 3 of this paper analyzes the security of Poly1305-AES. Section 4 discusses
the software achieving the speeds stated above. Section 5 discusses the speed of
Poly1305-AES in other contexts.

Genealogy

Gilbert, MacWilliams, and Sloane in [15] introduced the idea of provably secure
authentication. The Gilbert-MacWilliams-Sloane system is fast, but it requires
keys longer than L bytes to handle L-byte messages, and it requires a completely
new key for each message.

Wegman and Carter in [32] pointed out that the key length could be merely
64 lg L for the first message plus 16 bytes for each additional message. At about
the same time, in a slightly different context, Karp and Rabin achieved a key
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length of 32 bytes for the first message; see [19] and [26]. The system in [19] is
fast once keys are generated, but key generation is slow.

The idea of using a cipher such as AES to expand a short key into a long key
is now considered obvious. Brassard in [12] published the idea in the Wegman-
Carter context; I don’t know whether the idea was considered obvious back then.

Polynomial-evaluation MACs—MACs that treat each message as a univariate
polynomial over a finite field and then evaluate that polynomial at the key—
were introduced in three papers independently: [14] by den Boer; [31–Section
3] by Taylor; [9–Section 4] by Bierbrauer, Johansson, Kabatianskii, and Smeets.
Polynomial-evaluation MACs combine several attractive features: short keys,
fast key generation, and fast message authentication. Several subsequent papers
reported implementations of polynomial-evaluation MACs over binary fields: [28]
by Shoup; [4] by Afanassiev, Gehrmann, and Smeets, reinventing Kaminski’s
division algorithm in [18]; [22] by Nevelsteen and Preneel.

Polynomial-evaluation MACs over prime fields can exploit the multipliers
built into many current CPUs, achieving substantially better performance than
polynomial-evaluation MACs over binary fields. This idea was first published in
my paper [5] in April 1999, and explained in detail in [7]. Another MAC, avoiding
binary fields for the same reason, was published independently by Black, Halevi,
Krawczyk, Krovetz, and Rogaway in [11] in August 1999.

I used 32-bit polynomial coefficients modulo 2127 − 1 (“hash127”) in [5] and
[7]. The short coefficients don’t allow great performance (for short messages)
without precomputation, so I casually precomputed a few kilobytes of data for
each key; this is a disaster for applications handling many keys simultaneously,
but I didn’t think beyond a single key. Similarly, [11] (“UMAC”) uses large keys.

Krovetz and Rogaway in [21] suggested 64-bit coefficients modulo 264 − 59,
with an escape mechanism for coefficients between 264 − 59 and 264 − 1. They
did not claim competitive performance: their software, run twice to achieve a
reasonable 100-bit security level, was more than three times slower than hash127
(and more than six times slower for messages with all bits set). Krovetz and
Rogaway did point out, however, that their software did not require large tables.

In http://cr.yp.to/talks.html#2002.06.15, posted July 2002, I pointed
out that 128-bit coefficients over the slightly larger prime field Z/(2130−5) allow
excellent performance without precomputation. This paper explains Poly1305-
AES in much more detail.

Kohno, Viega, and Whiting subsequently suggested 96-bit coefficients modulo
2127− 1 (“CWC HASH”). They published some non-competitive timings for CWC
HASHand thengaveupon the idea.Acareful implementationofCWCHASHwith-
out precomputationwouldbe quite fast, although still not as fast asPoly1305-AES.

2 Specification

This section defines the Poly1305-AES function. The Poly1305-AES formula is
a straightforward polynomial evaluation modulo 2130 − 5; most of the detail is
in key format and message padding.
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Messages

Poly1305-AES authenticates messages. A message is any sequence of bytes
m[0],m[1], . . . ,m[� − 1]; a byte is any element of {0, 1, . . . , 255}. The length
� can be any nonnegative integer, and can vary from one message to another.

Keys

Poly1305-AES authenticates messages using a 32-byte secret key shared by the
message sender and the message receiver. The key has two parts: first, a 16-
byte AES key k; second, a 16-byte string r[0], r[1], . . . , r[15]. The second part
of the key represents a 128-bit integer r in unsigned little-endian form: i.e.,
r = r[0] + 28r[1] + . . . + 2120r[15].

Certain bits of r are required to be 0: r[3], r[7], r[11], r[15] are required to
have their top four bits clear (i.e., to be in {0, 1, . . . , 15}), and r[4], r[8], r[12] are
required to have their bottom two bits clear (i.e., to be in {0, 4, 8, . . . , 252}). Thus
there are 2106 possibilities for r. In other words, r is required to have the form r0+
r1+r2+r3 where r0 ∈

{
0, 1, 2, 3, . . . , 228 − 1

}
, r1/232 ∈

{
0, 4, 8, 12, . . . , 228 − 4

}
,

r2/264 ∈
{
0, 4, 8, 12, . . . , 228 − 4

}
, and r3/296 ∈

{
0, 4, 8, 12, . . . , 228 − 4

}
.

Nonces

Poly1305-AES requires each message to be accompanied by a 16-byte nonce,
i.e., a unique message number. Poly1305-AES feeds each nonce n through AESk

to obtain the 16-byte string AESk(n).
There is nothing special about AES here. One can replace AES with an

arbitrary keyed function from an arbitrary set of nonces to 16-byte strings. This
paper focuses on AES for concreteness.

Conversion and Padding

Let m[0],m[1], . . . ,m[� − 1] be a message. Write q = 
�/16�. Define integers
c1, c2, . . . , cq ∈

{
1, 2, 3, . . . , 2129

}
as follows: if 1 ≤ i ≤ ��/16� then

ci = m[16i− 16] + 28m[16i− 15] + 216m[16i− 14] + · · ·+ 2120m[16i− 1] + 2128;

if � is not a multiple of 16 then

cq = m[16q − 16] + 28m[16q − 15] + · · ·+ 28(� mod 16)−8m[�− 1] + 28(� mod 16).

In other words: Pad each 16-byte chunk of a message to 17 bytes by appending
a 1. If the message has a final chunk between 1 and 15 bytes, append 1 to the
chunk, and then zero-pad the chunk to 17 bytes. Either way, treat the resulting
17-byte chunk as an unsigned little-endian integer.

Authenticators

Poly1305r(m,AESk(n)), the Poly1305-AES authenticator of a message m with
nonce n under secret key (k, r), is defined as the 16-byte unsigned little-endian
representation of
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(((c1r
q + c2r

q−1 + · · ·+ cqr
1) mod 2130 − 5) + AESk(n)) mod 2128.

Here the 16-byte string AESk(n) is treated as an unsigned little-endian integer,
and c1, c2, . . . , cq are the integers defined above. See Appendix B for examples.

Sample Code

The following C++ code reads k from k[0], k[1], . . . , k[15], reads r from
r[0], r[1], . . . , r[15], reads AESk(n) from s[0], s[1], . . . , s[15], reads m
from m[0], m[1], . . . , m[l-1], and places Poly1305r(m,AESk(n)) into out[0],
out[1], . . . , out[15]:

#include <gmpxx.h>

void poly1305_gmpxx(unsigned char *out,
const unsigned char *r,
const unsigned char *s,
const unsigned char *m,unsigned int l)

{
unsigned int j;
mpz_class rbar = 0;
for (j = 0;j < 16;++j)
rbar += ((mpz_class) r[j]) << (8 * j);

mpz_class h = 0;
mpz_class p = (((mpz_class) 1) << 130) - 5;
while (l > 0) {
mpz_class c = 0;
for (j = 0;(j < 16) && (j < l);++j)
c += ((mpz_class) m[j]) << (8 * j);

c += ((mpz_class) 1) << (8 * j);
m += j; l -= j;
h = ((h + c) * rbar) % p;

}
for (j = 0;j < 16;++j)
h += ((mpz_class) s[j]) << (8 * j);

for (j = 0;j < 16;++j) {
mpz_class c = h % 256;
h >>= 8;
out[j] = c.get_ui();

}
}

See [16] for the underlying integer-arithmetic library, gmpxx.
This code is not meant as a high-speed implementation; it does not have even

the simplest speedups; it should be expected to provide intolerable performance.
It is simply a secondary statement of the definition of Poly1305-AES.
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Design Decisions

I considered various primes above 2128. I chose 2130 − 5 because its sparse form
makes divisions particularly easy in both software and hardware. My encoding
of messages as polynomials takes advantage of the gap between 2128 and 2130−5.

There are several reasons that Poly1305-AES uses nonces. First, comparable
protocols without nonces have security bounds that look like C(C + D)L/2106

rather thanDL/2106—hereC is thenumberofmessages authenticatedby the sender,
D is the number of forgery attempts, and L is the maximum message length—
and thus cannot be used with confidence for large C. Second, nonces allow the in-
vocation of AES to be carried out in parallel with most of the other operations
in Poly1305-AES, reducing latency in many contexts. Third, most protocols have
nonces anyway, for a variety of reasons: nonces are required for secure encryption,
for example, and nonces allow trivial rejection of replayed messages.

I constrained r to simplify and accelerate implementations of Poly1305-AES
in various contexts. A wider range of r—e.g., all 128-bit integers—would allow
a quantitatively better security bound, but the current bound DL/2106 will be
perfectly satisfactory for the foreseeable future, whereas slower authenticator
computations would not be perfectly satisfactory.

I chose little-endian instead of big-endian to improve overall performance.
Little-endian saves time on the most popular CPUs (the Pentium and Athlon)
while making no difference on most other CPUs (the PowerPC, for example, and
the UltraSPARC).

The definition of Poly1305-AES could easily be extended from byte strings
to bit strings, but there is no apparent benefit of doing so.

3 Security

This section discusses the security of Poly1305-AES.

Responsibilities of the User

Any protocol that uses Poly1305-AES must ensure unpredictability of the secret
key (k, r). This section assumes that secret keys are chosen from the uniform
distribution: i.e., probability 2−234 for each of the 2234 possible pairs (k, r).

Any protocol that uses Poly1305-AES must ensure that the secret key is, in
fact, kept secret. This section assumes that all operations are independent of (k, r),
except for the computation of authenticators by the sender and receiver. (There are
safe ways to reuse k for encryption, but those ways are not analyzed in this paper.)

The sender must never use the same nonce for two different messages. The
simplest way to achieve this is for the sender to use an increasing sequence of
nonces in, e.g., reverse-lexicographic order of 16-byte strings. (Problem: If a key
is stored on disk, while increasing nonce values are stored in memory, what
happens when the power goes out? Solution: Store a safe nonce value—a new
nonce larger than any nonce used—on disk alongside the key.) Any protocol
that uses Poly1305-AES must specify a mechanism of nonce generation and
maintenance that prevents duplicates.
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Security Guarantee

Poly1305-AES guarantees that the only way for the attacker to find an (n,m, a)
such that a = Poly1305r(m,AESk(n)), other than the authenticated messages
(n,m, a) sent by the sender, is to break AES. If the attacker cannot break AES,
and the receiver discards all (n,m, a) such that a �= Poly1305r(m,AESk(n)),
then the receiver will see only messages authenticated by the sender.

This guarantee is not limited to “meaningful” messages m. It is true even if
the attacker can see all the authenticated messages sent by the sender. It is true
even if the attacker can see whether the receiver accepts a forgery. It is true even
if the attacker can influence the sender’s choice of messages and unique nonces.
(But it is not true if the nonce-uniqueness rule is violated.)

Here is a quantitative form of the guarantee. Assume that the attacker sees at
most C authenticated messages and attempts at most D forgeries. Assume that
the attacker has probability at most δ of distinguishing AESk from a uniform
random permutation after C +D queries. Assume that all messages have length
at most L. Then, with probability at least

1− δ − (1− C/2128)−(C+1)/28D
L/16�
2106

,

all of the attacker’s forgeries are discarded. In particular, if C ≤ 264, then
the attacker’s chance of success is at most δ + 1.649 · 8D
L/16�/2106 < δ +
14D
L/16�/2106.

The most important design goal of AES was for δ to be small. There is,
however, no hope of proving that δ is small. Perhaps AES will be broken someday.
If that happens, users should switch to Poly1305-AnotherFunction. Poly1305-
AnotherFunction provides the same security guarantee relative to the security
of AnotherFunction.

Proof of the Security Guarantee

For each message m, write m for the polynomial c1x
q +c2x

q−1+· · ·+cqx
1, where

q, c1, c2, . . . , cq are defined as in Section 2. Define Hr(m) as the 16-byte unsigned
little-endian representation of (m(r) mod 2130 − 5) mod 2128; note that Hr and
k are independent. Define a group operation + on 16-byte strings as addition
modulo 2128, where each 16-byte string is viewed as the unsigned little-endian
representation of an integer in

{
0, 1, 2, . . . , 2128 − 1

}
. Then the authenticator

Poly1305r(m,AESk(n)) is equal to Hr(m) + AESk(n).
The crucial property of Hr is that it has small differential probabilities:

if g is a 16-byte string, and m,m′ are distinct messages of length at most
L, then Hr(m) = Hr(m′) + g with probability at most 8
L/16�/2106. See
below.

Theorem 5.4 of [8] now guarantees that Hr(m)+AESk(n) is secure if AES is
secure: specifically, that the attacker’s success chance against Hr(m)+AESk(n)
is at most δ + D(1− C/2128)−(C+1)/28
L/16�/2106.

The rest of this section is devoted to proving that Hr has small differential
probabilities.
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Theorem 3.1. 2130 − 5 is prime.

Proof. Define p1 = (2130 − 6)/1517314646 and p2 = (p1 − 1)/222890620702.
Observe that 37003 and 221101 are prime divisors of p2− 1; (37003 · 221101)2 >
p2; 2p2−1−1 is divisible by p2; 2(p2−1)/37003−1 and 2(p2−1)/221101−1 are coprime
to p2; p2

2 > p1; 2p1−1 − 1 is divisible by p1; 2(p1−1)/p2 − 1 is coprime to p1;
p2
1 > 2130 − 5; 22130−6 − 1 is divisible by 2130 − 5; and 2(2130−6)/p1 − 1 is coprime

to 2130 − 5. Hence p2, p1, and 2130 − 5 are prime by Pocklington’s theorem. ��

Theorem 3.2. Let m and m′ be messages. Let u be an integer. If the polynomial
m′ −m− u is zero modulo 2130 − 5 then m = m′.

Proof. Define c1, c2, . . . , cq as above, and define c′1, c
′
2, . . . , c

′
q′ for m′ similarly.

If q > q′ then the coefficient of xq in m′−m is 0−c1. By construction c1 is in{
1, 2, 3, . . . , 2129

}
, so it is nonzero modulo 2130 − 5; contradiction. Thus q ≤ q′.

Similarly q ≥ q′. Hence q = q′.
If i ∈ {1, 2, . . . , q} then ci−c′i is the coefficient of xq+1−i in m′−m−u, which

by hypothesis is divisible by 2130 − 5. But ci − c′i is between −2129 and 2129 by
construction. Hence ci = c′i. In particular, cq = c′q.

Define � as the number of bytes in m. Recall that q = 
�/16�; thus � is
between 16q − 15 and 16q. The exact value of � is determined by q and cq: it is
16q if 2128 ≤ cq, 16q − 1 if 2120 ≤ cq < 2121, 16q − 2 if 2112 ≤ cq < 2113, . . . ,
16q − 15 if 28 ≤ cq < 29. Hence m′ also has � bytes.

Now consider any j ∈ {0, 1, . . . , �− 1}. Write i = �j/16�+1; then 16i− 16 ≤
j ≤ 16i − 1, and 1 ≤ i ≤ 
�/16� = q, so m[j] =

⌊
ci/28(j−16i+16)

⌋
mod 256 =⌊

c′i/28(j−16i+16)
⌋

mod 256 = m′[j]. Hence m = m′. ��

Theorem 3.3. Let m,m′ be distinct messages, each having at most L bytes. Let
g be a 16-byte string. Let R be a subset of

{
0, 1, . . . , 2130 − 6

}
. Then there are

at most 8
L/16� integers r ∈ R such that Hr(m) = Hr(m′) + g.

Consequently, if #R = 2106, and if r is a uniform random element of R, then
Hr(m) = Hr(m′) + g with probability at most 8
L/16�/2106.

Proof. Define U as the set of integers in [−2130 + 6, 2130 − 6] congruent to g
modulo 2128. Note that #U ≤ 8.

If Hr(m) = Hr(m′)+ g then (m′(r) mod 2130− 5)− (m(r) mod 2130− 5) ≡ g
(mod 2128) so (m′(r) mod 2130 − 5)− (m(r) mod 2130 − 5) = u for some u ∈ U .
Hence r is a root of the polynomial m′−m−u modulo the prime 2130− 5. This
polynomial is nonzero by Theorem 3.2, and has degree at most 
L/16�, so it
has at most 
L/16� roots modulo 2130 − 5. Sum over all u ∈ U : there are most
8
L/16� possibilities for r. ��

4 A Floating-Point Implementation

This section explains how to compute Poly1305r(m,AESk(n)), given (k, r, n,m),
at very high speeds on common general-purpose CPUs.
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These techniques are used by my poly1305aes software library to achieve the
Poly1305-AES speeds reported in Section 1. See Appendix A for further speed
information. The software itself is available from http://cr.yp.to/mac.html.

The current version of poly1305aes includes separate implementations of
Poly1305-AES for the Athlon, the Pentium, the PowerPC, and the UltraSPARC;
it also includes a backup C implementation to handle other CPUs. This section
focuses on the Athlon for concreteness.

Outline

The overall strategy to compute Poly1305r(m,AESk(n)) is as follows. Start by
setting an accumulator h to 0. For each chunk c of the message m, first set
h ← h + c, and then set h ← rh. Periodically reduce h modulo 2130 − 5, not
necessarily to the smallest remainder but to something small enough to continue
the computation. After all input chunks c are processed, fully reduce h modulo
2130 − 5, and add AESk(n).

Large-Integer Arithmetic in Floating-Point Registers

Represent each of h, c, r as a sum of floating-point numbers, as in [7]. Specifically:

• As in Section 2, write r as r0 + r1 + r2 + r3 where r0 ∈
{
0, 1, 2, . . . , 228 − 1

}
,

r1/232 ∈
{
0, 4, 8, . . . , 228 − 4

}
, r2/264 ∈

{
0, 4, 8, . . . , 228 − 4

}
, and r3/296 ∈{

0, 4, 8, . . . , 228 − 4
}
. Store each of r0, r1, r2, r3, 5 · 2−130r1, 5 · 2−130r2,

5 · 2−130r3 in memory in 8-byte floating-point format.
• Write each message chunk c as d0 + d1 + d2 + d3 where d0, d1/232, d2/264 ∈{

0, 1, 2, 3, . . . , 232 − 1
}

and d3/296 ∈
{
0, 1, 2, 3, . . . , 234 − 1

}
.

• Write h as h0 + h1 + h2 + h3 where hi is a multiple of 232i in the range
specified below. Store each hi in one of the Athlon’s floating-point registers.

Warning: The FreeBSD operating system starts each program by instructing
the CPU to round all floating-point mantissas to 53 bits, rather than using the
CPU’s natural 64-bit precision. Make sure to disable this instruction. Under gcc,
for example, the code asm volatile("fldcw %0"::"m"(0x137f)) specifies full
64-bit mantissas.

To set h ← h+c, set h0 ← h0 +d0, h1 ← h1 +d1, h2 ← h2 +d2, h3 ← h3 +d3.
Before these additions, h0, h1/232, h2/264, h3/296 are required to be integers in
[−(63/128) · 264, (63/128) · 264]. After these additions, h0, h1/232, h2/264, h3/296

are integers in [−(127/256) · 264, (127/256) · 264].

Before multiplying h by r, reduce the range of each hi by performing four
parallel carries as follows:

• Define α0 = 295+294, α1 = 2127+2126, α2 = 2159+2158, and α3 = 2193+2192.
• Compute yi = fp64(hi + αi)−αi and xi = hi − yi. Here fp64(hi + αi) means

the 64-bit-mantissa floating-point number closest to hi +αi, with ties broken
in the usual way; see [3]. Then y0/232, y1/264, y2/296, y3/2130 are integers.

• Set h0 ← x0 + 5 · 2−130y3, h1 ← x1 + y0, h2 ← x2 + y1, and h3 ← x3 + y2.
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This substitution changes h by (2130 − 5)2−130y3, so it does not change h mod
2130−5. There are 17 floating-point operations here: 8 additions, 8 subtractions,
and 1 multiplication by the constant 5 · 2−130.

Ranges: x0, x1/232, and x2/264 are in [−(1/2) · 232, (1/2) · 232]; x3/296 is
in [−2 · 232, 2 · 232]; y0/232, y1/264, y2/296, and y3/2128 are in [−(127/256) ·
232, (127/256) · 232]; h0 is in [−(1147/1024) · 232, (1147/1024) · 232]; h1/232 is in
[−(255/256) · 232, (255/256) · 232]; h2/264 is in [−(255/256) · 232, (255/256) · 232];
h3/296 is in [−(639/256) · 232, (639/256) · 232].

To multiply h by r modulo 2130 − 5, replace (h0, h1, h2, h3) with

(r0h0 + 5 · 2−130r1h3 + 5 · 2−130r2h2 + 5 · 2−130r3h1,
r0h1 + r1h0 + 5 · 2−130r2h3 + 5 · 2−130r3h2,
r0h2 + r1h1 + r2h0 + 5 · 2−130r3h3,
r0h3 + r1h2 + r2h1 + r3h0).

Recall that 2−34r1, 2−66r2, and 2−98r3 are integers, so 2−130r1h3, 2−130r2h2,
and 2−130r3h1 are integers; similarly, 2−130r2h3 and 2−130r3h2 are multiples of
232, and 2−130r3h3 is a multiple of 264. There are 28 floating-point operations
here: 16 multiplications and 12 additions.

Ranges: h0, h1/232, h2/264, h3/296 are now integers of absolute value at most
228(1147/1024 + 2 · (5/4)255/256 + (5/4)639/256)232 < (63/128)264, ready for
the next iteration of the inner loop.

Note that the carries can be omitted on the first loop: d0 is an integer in
[0, 232]; d1/232 is an integer in [0, 232]; d2/264 is an integer in [0, 232]; d3/296 is
an integer in [0, 3 · 232]; and 228(1 + (5/4) + (5/4) + (5/4)3)232 < (63/128)264.

Output Conversion

After the last message chunk is processed, carry one last time, to put h0, h1, h2, h3

into the small ranges listed above.
Add 2130−297 to h3; add 297−265 to h2; add 265−233 to h1; and add 233−5

to h0. This makes each hi positive, and puts h = h0 +h1 +h2 +h3 into the range{
0, 1, . . . , 2(2130 − 5)− 1

}
.

Perform a few integer add-with-carry operations to convert the accumulator
into a series of 32-bit words in the usual form. Subtract 2130 − 5, and keep the
result if it is nonnegative, being careful to use constant-time operations so that
no information is leaked through timing.

Finally, add AESk(n). There are two reasons to pay close attention to the
AES computation:

• It is extremely difficult to write high-speed constant-time AES software.
Typical AES software leaks key bytes to the simplest conceivable timing
attack. See [6]. My new AES implementations go to extensive effort to reduce
the AES timing variability.

• The time to compute AESk(n) from (k, n) is more than half of the time
to compute Poly1305r(m,AESk(n)) for short messages, and remains quite
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noticeable for longer messages. My new AES implementations are, as far as
I know, the fastest available software for computing AESk(n) from (k, n).
Of course, if there is room in cache, then one can save some time by in-
stead computing AESk(n) from (K,n), where K is a pre-expanded version
of k.

Details of the AES computation are not discussed in this paper but are discussed
in the poly1305aes documentation.

Instruction Selection and Scheduling

Consider an integer (such as d0) between 0 and 232 − 1, stored in the usual way
as four bytes. How does one load the integer into a floating-point register, when
the Athlon does not have a load-four-byte-unsigned-integer instruction? Here are
three possibilities:

• Concatenate the four bytes with (0, 0, 0, 0), and use the Athlon’s load-eight-
byte-signed-integer instruction. Unfortunately, the four-byte store forces the
eight-byte load to wait for dozens of cycles.

• Concatenate the bytes with (0, 0, 56, 67), producing an eight-byte floating-
point number. Load that number, and subtract 252+251 to obtain the desired
integer. This well-known trick has the virtue of also allowing the integer to
be scaled by (e.g.) 232: replace 67 with 69 and 252 + 251 with 284 + 283.
Unfortunately, as above, the four-byte store forces the eight-byte load to
wait for dozens of cycles.

• Subtract 231 from the integer, use the Athlon’s load-four-byte-signed-integer
instruction, and add 231 to the result. This has smaller latency, but puts
more pressure on the floating-point unit.

Top performance requires making the right choice.
(A variant of Poly1305-AES using signed 32-bit integers would save time on

the Athlon. On the other hand, it would lose time on typical 64-bit CPUs.)
This is merely one example of several low-level issues that can drastically

affect speed: instruction selection, instruction scheduling, register assignment,
instruction fetching, etc. A “fast” implementation of Poly1305-AES, with just
a few typical low-level mistakes, will use twice as many cycles per byte as the
software described here.

Other Modern CPUs

The same floating-point operations also run at high speed on the Pentium 1,
Pentium MMX, Pentium Pro, Pentium II, Pentium III, Pentium 4, Pentium M,
Celeron, Duron, et al.

The UltraSPARC, PowerPC, et al. support fast arithmetic on floating-point
numbers with 53-bit, rather than 64-bit, mantissas. The simplest way to achieve
good performance on these chips is to break a 32-bit number into two 16-bit
pieces before multiplying it by another 32-bit number.

As in the case of the Athlon, careful attention to low-level CPU details is
necessary for top performance.
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5 Other Implementation Strategies

Some people, upon hearing that there is a tricky way to use the Athlon’s floating-
point unit to compute a function quickly, leap to the unjustified conclusion that
the same function cannot be computed quickly except on an Athlon. Consider,
for example, the incorrect statement “hash-127 needs good hardware support
for a fast implementation” in [17–footnote 3].

This section outlines three non-floating-point methods to compute Poly1305-
AES, and indicates contexts where the methods are useful.

Integer Registers

The 130-bit accumulator in Poly1305-AES can be spread among several integer
registers rather than several floating-point registers.

This is good for low-end CPUs that do not support floating-point operations
but that still have reasonably fast integer multipliers. It is also good for some
high-end CPUs, such as the Athlon 64, that offer faster multiplication through
integer registers than through floating-point registers.

Tables

One can make a table of the integers r, 2r, 4r, 8r, . . . , 2129r modulo 2130− 5, and
then multiply any 130-bit integer by r by adding, on average, about 65 elements
of the table.

One can reduce the amount of work by using both additions and subtractions,
by increasing the table size, and by choosing table entries more carefully. For
example, one can include 3r, 24r, 192r, . . . in the table, and then multiply any
130-bit integer by r by adding and subtracting, on average, about 38 elements
of the table. This is a special case of an algorithm often credited to Brickell,
Gordon, McCurley, Wilson, Lim, and Lee, but actually introduced much earlier
by Pippenger in [23].

One can also balance the table size against the effort in reduction modulo
2130 − 5. Consider, for example, the table r, 2r, 3r, 4r, . . . , 255r.

Table lookups are often the best approach for tiny CPUs that do not have
any fast multiplication operations. Of course, their key agility is poor, and
they are susceptible to timing attacks if they are not implemented very care-
fully.

Special-Purpose Circuits

An 1800MHz AMD Duron, costing under $50, can feed 4 gigabits per second
of 1500-byte messages through Poly1305-AES with the software discussed in
Section 4. Hardware implementations of Poly1305-AES can strip away a great
deal of unnecessary cost: the multiplier is only part of the cost of the Duron;
furthermore, some of the multiplications are by sparse constants; furthermore,
only about 20% of the multiplier area is doing any useful work, since each input



44 D.J. Bernstein

is much smaller than 64 bits; furthermore, almost all carries can be deferred
until the end of the Poly1305-AES computation, rather than being performed
after each multiplication; furthermore, hardware implementations need not, and
should not, imitate traditional software structures—one can directly build a fast
multiplier modulo 2130−5, taking advantage of more sophisticated multiplication
algorithms than those used in the Duron. Evidently Poly1305-AES can handle
next-generation Ethernet speeds at reasonable cost.
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A Appendix: Speed Graphs

These graphs show the time to verify an authenticator in various situations. The
horizontal axis on the graphs is message length, from 0 bytes to 4096 bytes. The
vertical axis on the graphs is time, from 0 CPU cycles to 24576 CPU cycles;
time includes function-call overhead, timing overhead, etc. The bottom-left-to-
top-right diagonal is 6 CPU cycles per byte. Color scheme:

• Non-reddish (black, green, dark blue, light blue): Keys are in cache.
• Reddish (red, yellow, purple, gray): Keys are not in cache. Loading the keys

from DRAM takes extra time.
• Non-greenish (black, red, dark blue, purple): Messages, authenticators, and

nonces are in cache.
• Greenish (green, yellow, light blue, gray): Messages, authenticators, and

nonces are not in cache. Loading the data from DRAM takes extra time,
typically growing with the message length.

• Non-blueish (black, red, green, yellow): Keys, message, authenticators, and
nonces are aligned.

• Blueish (dark blue, purple, light blue, gray): Keys, message, authenticators,
and nonces are unaligned. This hurts some CPUs.

The graphs include code in cache and code out of cache, with no color change.
The out-of-cache case costs between 10000 and 30000 cycles, depending on the
CPU; it is often faintly visible as a cloud above the in-cache case.

Lengths divisible by 16 are slightly faster than lengths not divisible by 16.
The best case in (almost) every graph is length divisible by 16, everything in
cache, everything aligned; this case is visible as 256 black dots at the bottom of
the graph.

In black-and-white printouts, the keys-not-in-cache case is a slightly higher
line at the same slope; the data-not-in-cache case is a line at a considerably
higher slope; the unaligned case is a line at a slightly higher slope.

See http://cr.yp.to/mac/speed.html for much more speed information.
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AMD Athlon, 900MHz: IBM PowerPC RS64 IV, 668MHz:

Intel Pentium III, 500MHz: Intel Pentium III, 850MHz:

Intel Pentium III, 1000MHz: Intel Pentium 4, 1900MHz:
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Intel Pentium 4, 3400MHz: Intel Pentium M, 1300MHz:

Motorola PowerPC 7410, 533MHz: Sun UltraSPARC II, 296MHz:

Sun UltraSPARC IIi, 360MHz: Sun UltraSPARC III, 900MHz:

Two notes: 1. The load-keys-from-DRAM penalty (red) is quite small, thanks
to Poly1305-AES’s key agility. On the PowerPC 7410, keys in cache are slower
than keys out of cache, presumably because of a cache-associativity accident
that slightly more sophisticated code will be able to avoid.

2. The load-data-from-DRAM penalty (green) is generally quite noticeable.
I have not yet experimented with prefetch instructions. But the penalty is small
on the Pentium 4 and almost invisible on the Pentium M; the Pentium M does
a good job of figuring out for itself which data to prefetch.
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B Appendix: Examples

The following table, with all integers on the right displayed in hexadecimal,
illustrates authenticator computations for strings of length 2, 0, 32, and 63. The
notation m(r) means c1r

q +c2r
q−1 + · · ·+cqr

1. A much more extensive test suite
appears in http://cr.yp.to/mac/test.html.

m f3 f6

c1 00000000000000000000000000001f6f3

r 85 1f c4 0c 34 67 ac 0b e0 5c c2 04 04 f3 f7 00

m(r) mod 2130 − 5 321e58e25a69d7f8f27060770b3f8bb9c

k ec 07 4c 83 55 80 74 17 01 42 5b 62 32 35 ad d6

n fb 44 73 50 c4 e8 68 c5 2a c3 27 5c f9 d4 32 7e

AESk(n) 58 0b 3b 0f 94 47 bb 1e 69 d0 95 b5 92 8b 6d bc

Poly1305r(m,AESk(n)) f4 c6 33 c3 04 4f c1 45 f8 4f 33 5c b8 19 53 de

m
r a0 f3 08 00 00 f4 64 00 d0 c7 e9 07 6c 83 44 03

m(r) mod 2130 − 5 000000000000000000000000000000000

k 75 de aa 25 c0 9f 20 8e 1d c4 ce 6b 5c ad 3f bf

n 61 ee 09 21 8d 29 b0 aa ed 7e 15 4a 2c 55 09 cc

AESk(n) dd 3f ab 22 51 f1 1a c7 59 f0 88 71 29 cc 2e e7

Poly1305r(m,AESk(n)) dd 3f ab 22 51 f1 1a c7 59 f0 88 71 29 cc 2e e7

m 66 3c ea 19 0f fb 83 d8 95 93 f3 f4 76 b6 bc 24

d7 e6 79 10 7e a2 6a db 8c af 66 52 d0 65 61 36

c1 124bcb676f4f39395d883fb0f19ea3c66

c2 1366165d05266af8cdb6aa27e1079e6d7

r 48 44 3d 0b b0 d2 11 09 c8 9a 10 0b 5c e2 c2 08

m(r) mod 2130 − 5 1cfb6f98add6a0ea7c631de020225cc8b

k 6a cb 5f 61 a7 17 6d d3 20 c5 c1 eb 2e dc dc 74

n ae 21 2a 55 39 97 29 59 5d ea 45 8b c6 21 ff 0e

AESk(n) 83 14 9c 69 b5 61 dd 88 29 8a 17 98 b1 07 16 ef

Poly1305r(m,AESk(n)) 0e e1 c1 6b b7 3f 0f 4f d1 98 81 75 3c 01 cd be

m ab 08 12 72 4a 7f 1e 34 27 42 cb ed 37 4d 94 d1

36 c6 b8 79 5d 45 b3 81 98 30 f2 c0 44 91 fa f0

99 0c 62 e4 8b 80 18 b2 c3 e4 a0 fa 31 34 cb 67

fa 83 e1 58 c9 94 d9 61 c4 cb 21 09 5c 1b f9

c1 1d1944d37edcb4227341e7f4a721208ab

c2 1f0fa9144c0f2309881b3455d79b8c636

c3 167cb3431faa0e4c3b218808be4620c99

c4 001f91b5c0921cbc461d994c958e183fa

r 12 97 6a 08 c4 42 6d 0c e8 a8 24 07 c4 f4 82 07

m(r) mod 2130 − 5 0c3c4f37c464bbd44306c9f8502ea5bd1

k e1 a5 66 8a 4d 5b 66 a5 f6 8c c5 42 4e d5 98 2d

n 9a e8 31 e7 43 97 8d 3a 23 52 7c 71 28 14 9e 3a

AESk(n) 80 f8 c2 0a a7 12 02 d1 e2 91 79 cb cb 55 5a 57

Poly1305r(m,AESk(n)) 51 54 ad 0d 2c b2 6e 01 27 4f c5 11 48 49 1f 1b
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Abstract. T-functions were introduced by Klimov and Shamir in a se-
ries of papers during the last few years. They are of great interest for
cryptography as they may provide some new building blocks which can
be used to construct efficient and secure schemes, for example block ci-
phers, stream ciphers or hash functions.

In the present paper, we define the narrowness of a T-function and
study how this property affects the strength of a T-function as a cryp-
tographic primitive. We define a new data strucure, called a solution
graph, that enables solving systems of equations given by T-functions.
The efficiency of the algorithms which we propose for solution graphs de-
pends significantly on the narrowness of the involved T-functions. Thus
the subclass of T-functions with small narrowness appears to be weak
and should be avoided in cryptographic schemes.

Furthermore, we present some extensions to the methods of using
solution graphs, which make it possible to apply these algorithms also
to more general systems of equations, which may appear, for example,
in the cryptanalysis of hash functions.

Keywords: Cryptanalysis, hash functions, solution graph, T-functions,
w-narrow.

1 Introduction

Many cryptanalytical problems can be described by a system of equations. A
well-known example are the algebraic attacks on block and stream ciphers which
use systems of multivariate quadratic equations for describing the ciphers.

However, many cryptographic algorithms use a mixture of different kinds of
operations (e.g. bitwise defined functions, modular additions or multiplications
and bit shifts or rotations) such that they cannot be described easily by some
relatively small or simple system of linear or quadratic equations. As these oper-
ations are algebraically rather incompatible, it is hard to solve equations which
include different ones algebraically.
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In a series of papers [6, 7, 8] Klimov and Shamir introduced the notion of
T-functions, in order to be able to prove theoretical results at least for some of
the constructions mentioned above. Roughly spoken, a T-function is a function
for which the k-th bit of the output depends only on the first k input bits. Many
basic operations available on modern microprocessors are T-functions and this
means that many T-functions can be implemented very efficiently. Furthermore
many of the operations mentioned above are T-functions or very similar to T-
functions.

In this paper we concentrate on a certain subclass of T-functions, which we
call w-narrow T-functions. In a w-narrow T-function the dependance of the k-th
output bit on the first k input bits is even more restricted: The k-th output bit
must be computable from only the k-th input bits and some information of a
length of w bits computed from the first k − 1 input bits.

We present a data structure, called a solution graph, which allows to effi-
ciently represent the set of solutions of an equation, which can be described
by a w-narrow T-function. The smaller w is, the more efficient is this repre-
sentation. Additionally we present a couple of algorithms which can be used
for analysing and solving such systems of equations described by T-functions.
These algorithms include enumerating all solutions, computing the number of
solutions, choosing random solutions and also combining two or more solution
graphs, e.g. to compute the intersection of two sets of solutions or to compute
the concatenation of two T-functions.

However, this paper is not only dedicated to the quite young subject of T-
functions. The solution graphs together with the presented algorithms, can be
used for cryptanalysis in a lot of contexts, for example also in the cryptanalysis
of hash functions. In his attacks on the hash functions MD4, MD5 and RIPEMD
(see [3, 4, 5]), Dobbertin used, as one key ingredient, an algorithm which can be
described as some kind of predecessor of the algorithms used for constructing
solution graphs and enumerating all the solutions (see Appendix A). In this
paper we also describe some extensions which allow to apply the algorithms also
in contexts which are a little more general than systems of equations describable
by “pure” T-functions.

We start in Section 2 by defining the narrowness of a T-function and give
some basic examples and properties. Then in Section 3 we describe the new
data structure, the solution graph, and give an algorithm for constructing so-
lution graphs from systems of equations of T-functions. Section 4 gives further
algorithms for solution graphs.

In Section 5 we present some possible extensions to the definition of a solution
graph, which allow to apply these algorithms also in more general situations, for
example in the cryptanalysis of hash functions.

In Appendix A we describe the ideas and the original algorithm used by Dob-
bertin in his attacks. Two actual examples of systems coming from the crypt-
analysis of hash functions, which have been solved successfully with solution
graphs are given in Appendix B.

In this extended abstract the proofs are omitted. They can be found in [1]
and the full version [2] of this paper.
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2 Notation and Definitions

For the convenience of the reader, we mainly adopt the notation of [9]. Especially,
let n be the word size in bits, B be the set {0, 1} and let [x]i denote the i-th
bit of the word x ∈ B

n, where [x]0 is the least significant bit of x. Hence,
x = ([x]n−1 , . . . , [x]0) also stands for the integer

∑n−1
i=0 [x]i 2i.

If x = (x0, . . . , xm−1)T ∈ B
m×n is a column vector of m words of n bits, then

[x]i stands for the column vector ([x0]i , . . . , [xm−1]i)
T of the i-th bits of those

words.
By x � s we will denote a left shift by s positions and by x ≪ r we denote

a left rotation (a cyclic shift) by r positions.
Let us first recall the definition of a T-function from [9]:

Definition 1 (T-Function). A function f : B
m×n → B

l×n is called a T-
function if the k-th column of the output [f(x)]k−1 depends only on the first
k columns of the input [x]k−1 , . . . , [x]0:⎛⎜⎜⎜⎜⎜⎝

[x]0
[x]1
[x]2
...

[x]n−1

⎞⎟⎟⎟⎟⎟⎠

T

�→

⎛⎜⎜⎜⎜⎜⎝
f0([x]0)
f1([x]0 , [x]1)
f2([x]0 , [x]1 , [x]2)
...
fn−1([x]0 , [x]1 , . . . , [x]n−1)

⎞⎟⎟⎟⎟⎟⎠
T

(1)

There are many examples for T-functions. All bitwise defined functions, e.g.
a Boolean operation like (x, y) �→ x ∧ y or the majority function (x, y, z) �→
(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z), are T-functions, because the k-th output bit depends
only on the k-th input bits. But also other common functions, like addition or
multiplication of integers (modulo 2n) are T-functions, as can be easily seen from
the schoolbook methods. For example, when executing an addition, to compute
the k-th bit of the sum, the only necessary information (besides the k-th bits of
the addends) is the carrybit coming from computing the (k − 1)-th bit.

This is also a good example for some other more special property that many
T-functions have: You need much less information than “allowed” by the defini-
tion of a T-function: In order to compute the k-th output column [f(x)]k−1 you
need only the k-th input column [x]k−1 and very little information about the first
k−1 columns [x]k−2 , . . . , [x]0, for example some value αk([x]k−2 , . . . , [x]0) ∈ B

w

of w bits width. This leads to our definition of a w-narrow T-function:

Definition 2 (w-narrow).
A T-function f is called w-narrow if there are mappings

α1 : B
m → B

w, αk : B
m+w → B

w, k = 2, . . . , n− 1 (2)

and auxiliary variables

a1 := α1([x]0), ak := αk([x]k−1 , ak−1), k = 2, . . . , n− 1 (3)
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such that f can be written as⎛⎜⎜⎜⎜⎜⎜⎜⎝

[x]0
[x]1
[x]2
[x]3
...

[x]n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

�→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

f0([x]0)
f1([x]1 , a1)
f2([x]2 , a2)
f3([x]3 , a3)
...
fn−1([x]n−1 , an−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

(4)

The smallest w such that some f is w-narrow is called the narrowness of f .

Let us take a look at some examples of w-narrow T-functions.

Example 1.

1. The identity function and all bitwise defined functions are 0-narrow.
2. As described above, addition of two integers modulo 2n is a 1-narrow T-

function, as you only need to remember the carrybit in each step.
3. A left shift by s bits is an s-narrow T-function.
4. Each T-function f : B

m×n → B
l×n is (m(n− 1))-narrow.

Directly from Definition 2 one can derive the following lemma about the
composition of narrow functions:

Lemma 1. Let f, g1, . . . , gr be T-functions which are wf -, wg1-,. . . ,wgr
-narrow

respectively. Then the function h defined by

h(x) := f(g1(x), . . . , gr(x))

is (wf + wg1 + . . . + wgr
)-narrow.

Note that this lemma (as the notion of w-narrow itself) gives only an upper
bound on the narrowness of a function: For example, the addition of 4 integers
can be composed of three (1-narrow) 2-integer-additions. Thus by Lemma 1 it
is 3-narrow. But it is also 2-narrow, because the carry value to remember can
never become greater than 3 (which can be represented in B

2) when adding 4
bits and a maximum (earlier) carry of 3.

3 Solution Graphs for Narrow T-Functions

In this section we will describe a data structure which allows to represent the
set of solutions of a system of equations of T-functions.

Common approaches for finding solutions of such equations are doing an
exhaustive or randomized search or using some more sophisticated algorithms
as the one used by Dobbertin in his attacks on the hash functions MD4, MD5
and RIPEMD in [3, 4, 5]. This algorithm, which gave us the idea of introducing
the data structure presented here, is described in Appendix A.
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In general, the trees build in Dobbertin’s algorithm and thus its complexity,
needed for building them, may become quite large, in the worst case up to the
complexity of an exhaustive search. But this can be improved a lot in many
cases, or, to be more precise, in the case of T-functions which are w-narrow for
some small w, as we will show in the sequel.

Let us first note, that it suffices to consider only the problem of solving one
equation

f(x) = 0, (5)

where f : B
m×n → B

n is some T-function:
If we had an equation described by two T-functions g(x) = h(x) we could simply
define ĝ(x) := g(x) ⊕ h(x) and consider the equation ĝ(x) = 0 instead. If we
had a system of several such equations ĝ1(x) = 0, . . . , ĝr(x) = 0 (or a function
ĝ : B

m×n → B
l×n with component functions ĝ1, . . . , ĝr) we could simply define

f(x) :=
∨r

i=1 ĝi(x) and consider only the equation f(x) = 0.
As both operations, ⊕ and ∨, are 0-narrow, due to Lemma 1, the narrowness of
f is at most the sum of the narrownesses of the involved functions.

If f in (5) is a w-narrow T-function for some “small” w, a solution graph, as
given in the following definition, can be efficiently constructed and allows many
algorithms which are useful for cryptanalysing such functions.

Definition 3 (Solution Graph). A directed graph G is called a solution graph
for an equation f(x) = 0 where f : B

m×n → B
n, if the following properties hold:

1. The vertices of G can be arranged in n+1 layers such that each edge goes from
a vertex in layer l to some vertex in layer l + 1 for some l ∈ {0, . . . , n− 1}.

2. There is only one vertex in layer 0, called the root.
3. There is only one vertex in layer n, called the sink.
4. The edges are labelled with values from B

m such that the labels for all edges
starting in one vertex are pairwise distinct.

5. There is a 1-to-1 correspondence between paths from the root to the sink in
G and solutions of the equation f(x) = 0:
For each solution x there exists a path from the root to the sink such that
the k-th edge on this path is labelled with [x]k−1 and vice versa.

The maximum number of vertices in one layer of a solution graph G is called the
width of G.

In the following we will describe how to efficiently construct a solution graph
which represents the complete set of solutions of (5). Therefore let f be w-narrow
with some auxiliary functions α1, . . . , αn−1 as in Definition 2. To identify the
vertices during the construction we label them with two numbers (l, a) each,
where l ∈ {0, . . . , n} is the number of the layer and a ∈ B

w corresponds to
a possible output of one of the auxiliary functions αi. This labelling is only
required for the construction and can be deleted afterwards.
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Then the solution graph can be constructed by the following algorithm:

Algorithm 1 (Construction of a Solution Graph).

1. Start with one vertex labelled with (0, ∗)
2. For each possible value for [x]0, for which it holds that f0([x]0) = 0:

Add an edge
(0, ∗) −→ (1, α1([x]0))

and label this edge with the value of [x]0.
3. For each layer l, l ∈ {1, . . . , n− 2}, and each vertex (l, al) in layer l:

For each possible value for [x]l for which fl([x]l , al) = 0:
Add some edge

(l, al) −→ (l + 1, αl+1([x]l , al))

and label this edge with the value of [x]l.
4. For each vertex (n− 1, a) in layer n− 1 and each possible value for [x]n−1 for

which fn−1([x]n−1 , a) = 0:
Add an edge

(n− 1, a) −→ (n, ∗)

and label it with the value of [x]n−1.

Toy examples of the results of this construction can be found in Figure 1.
Compared with the trees in Figure 5 and 6, resulting from Dobbertin’s algorithm,
this shows that these solution graphs are much more efficient.

From the description of Algorithm 1 the following properties can be easily
deduced:

Theorem 1. Let f : B
m×n → B

n be a w-narrow T-function and G the graph
for f(x) = 0 constructed by Algorithm 1. Then G
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Fig. 1. Solution graphs for the equations ((x ∨ 00102) + 01102) ⊕ 00012 = 0 (on the
left) and ((01002 ⊕ (x+01012))− (01002)⊕ x)⊕11012 = 0 (on the right) with n = 4



56 M. Daum

– is a solution graph for f(x) = 0,
– has width at most 2w, i.e. G has v ≤ (n−1)2w +2 vertices and e ≤ (v−1)2m

edges.

Proof. For the proof, see [1] or the full version [2] of this paper.

This theorem gives an upper bound on the size of the constructed solution
graph, which depends significantly on the narrowness of the examined function
f . This shows that, as long as f is w-narrow for some small w, such a solution
graph can be constructed quite efficiently.

4 Algorithms for Solution Graphs

The design of a solution graph, as presented in Section 3 is very similar to that of
binary decision diagrams (BDDs). Thus it is not surprising, that many ideas of
algorithms for BDDs can be adopted to construct efficient algorithms for solution
graphs. For an introduction to the subject of BDDs, see for example [10].

The complexity of these algorithms naturally depends mainly on the size of
the involved solution graphs. Thus, we will first describe how to reduce this size.

4.1 Reducing the Size

We describe this using the example of the solution graph on the right hand side
of Figure 1: There are no edges starting in (3, 11) and thus there is no path from
the root to the sink which crosses this vertex. This means, due to Definition 3,
this vertex is of no use for representing any solution, and therefore it can be
deleted. After this deletion the same applies for (2, 11) and thus this vertex can
also be deleted.

For further reduction of the size let us define what we mean by equivalent
vertices:

Definition 4. Two vertices a and b in a solution graph are called equivalent,
if for each edge a → c (with some arbitrary vertex c) labelled with x there is an
edge b→ c labelled with x and vice versa.

For the reduction of the size, it is important to notice the following lemma:

Lemma 2. If a and b are equivalent, then there are the same paths (according
to the labelling of their edges) from a to the sink as from from b to the sink.

For example let us now consider the vertices (3, 01) and (3, 10). From each of
these two vertices there are two edges, labelled with 0 and 1 respectively, which
point to (4, ∗) and thus these two vertices are equivalent. According to Lemma 2
this means that a path from the root to one of those two vertices can be extended
to a path to the sink by the same subpaths, independently of whether it goes
through (3, 01) or (3, 10). Due to the defining property of a solution graph, this
means, that we can merge these two equivalent vertices into one, reducing the
size once more. The resulting solution graph is presented in Figure 2. In this
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Fig. 2. Solution graph for the equation ((01002⊕(x+01012))−(01002⊕x))⊕11012 = 0
(compare Figure 1) after reducing its size

figure the labels of the vertices are omitted as they are only required for the
construction algorithm.

Of course, merging two equivalent vertices, and also the deletion of vertices as
described above, may again cause two vertices to become equivalent, which have
not been equivalent before. But this concerns only vertices in the layer below
the layer in which two vertices were merged. Thus for the reduction algorithm
it is important to work from top (layer n− 1) to bottom (layer 1):

Algorithm 2 (Reduction of the Size).

1. Delete each vertex (together with corresponding edges) for which there is no
path from the root to this vertex or no path from this vertex to the sink.

2. For each layer l starting from n−1 down to 1 merge all pairs of vertices in layer
l which are equivalent.

To avoid having to check all possible pairs of vertices in one layer for equiva-
lence separately to find the equivalent vertices (which would result in a quadratic
complexity), in Algorithm 2 one should first sort the vertices of the active layer
according to their set of outgoing edges. Then equivalent vertices can be found
in linear time.

Similar to what can be proven for ordered BDDs, for solution graphs reduced
by Algorithm 2 it can be shown that they have minimal size:

Theorem 2. Let G be a solution graph for some function f and let G̃ be the
output of Algorithm 2 applied to G. Then there is no solution graph for f which
has less vertices than G̃.

Proof. For the proof, see [1] or the full version [2] of this paper. ��

With the help of the following theorem it is possible to compute the narrow-
ness of f , i.e. the smallest value w such that f is w-narrow. Like Theorem 1 gives
a bound on the width of a solution graph based on a bound for the narrowness
of the considered function, the following theorem provides the other direction:
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Theorem 3. Let f : B
m×n → B

n be a T-function and define f̃ : B
(m+1)×n →

B
n by f̃(x, y) := f(x)⊕ y.

If G is a minimal solution graph of width W for the equation f̃(x, y) = 0, then
f is a 
log2 W �-narrow T-function.

Proof. For the proof, see [1] or the full version [2] of this paper. ��

In the following we always suppose that we have solution graphs of minimal
size (from Algorithm 2 and Lemma 2) as inputs.

4.2 Computing Solutions

Similar to what can be done by Dobbertin’s algorithm (see Algorithm 7 in Ap-
pendix A), a solution graph can also be used to enumerate all the solutions:

Algorithm 3 (Enumerate Solutions).
Compute all possible paths from the root to the sink by a depth-first search and
output the corresponding labelling of the edges.

Of course, the complexity of this algorithm is directly related to the number
of solutions. If there are many solutions, it is similar to the complexity of an
exhaustive search (as for Algorithm 7), simply because all of them need to be
written. But if there are only a few, it is very fast, usually much faster than
Algorithm 7.

However, often we are only interested in the number of solutions of an equa-
tion which can be computed much more efficiently, namely, with a complexity
linear in the size of the solution graph. The following algorithm achieves this by
labeling every vertex with the number of possible paths from that vertex to the
sink. Then the number computed for the root gives the number of solutions:

Algorithm 4 (Number of Solutions).

1. Label the sink with 1.
2. For each layer l from n− 1 down to 0:

Label each vertex A in l with the sum of the labels of all vertices B (in layer
l + 1) for which an edge A→ B exists.

3. Output the label of the root.

An application of this algorithm is illustrated in Figure 3.
After having labelled all vertices by Algorithm 4 it is even possible to choose

solutions from the represented set uniformly at random:

Algorithm 5 (Random Solution).
Prerequisite: The vertices have to be labelled as in Algorithm 4.

1. Start at the root.
2. Repeat

– From the active vertex A (labelled with nA) randomly choose one outgoing
edge such that the probability that you choose A → B is nB

nA
where nB is

the label of B.
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Fig. 3. A solution graph after application of Algorithm 4

– Remember the label of A → B
– Make B the active vertex.

until you reach the sink.
3. Output the solutions corresponding to the remembered labels of the edges on

the chosen path.

4.3 Combining Solution Graphs

So far, we only considered the situation in which the whole system of equations
is reduced to one equation f(x) = 0, as described at the beginning of Section
3, and then a solution graph is constructed from this equation. Sometimes it is
more convenient to consider several (systems of) equations separately and then
combine their sets of solutions in some way. Therefore let us now consider two
equations

g(x1, . . . , xr, y1, . . . , ys) = 0 (6)
h(x1, . . . , xr, z1, . . . , zt) = 0 (7)

which include some common variables x1, . . . , xr as well as some distinct vari-
ables y1, . . . , ys and z1, . . . , zt respectively. Let Gg and Gh be the solution graphs
for (6) and (7) respectively.

Then the set of solutions of the form (x1, . . . , xr, y1, . . . , ys, z1, . . . , zt) which
fulfill both equations simultaneously can be computed by the following algo-
rithm.

Algorithm 6 (Intersection). Let the vertices in Gg be labelled with (l, ag)g

where l is the layer and ag is some identifier which is unique per layer, and those of
Gh analogously with some (l, ah)h. Then construct a graph whose vertices will be
labelled with (l, ag, ah) by the following rules:

1. Start with the root (0, ∗g, ∗h).
2. For each layer l ∈ {0, . . . , n− 1} and each vertex (l, ag, ah) in layer l:
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– Consider each pair of edges

((l, ag)g → (l + 1, bg)g, (l, ah)h → (l + 1, bh)h)

labelled with

(Xg, Yg) = ([x1]l , . . . , [xr]l , [y1]l , . . . , [ys]l)
and (Xh, Zh) = ([x1]l , . . . , [xr]l , [z1]l , . . . , [zt]l) respectively.

– If Xg = Xh, add an edge

(l, ag, ah) → (l + 1, bg, bh)

and label it with (Xg, Yg, Zh).

The idea of this algorithm is to traverse the two input graphs Gg and Gh

in parallel and to simulate computing both functions in parallel in the output
graph by storing all necessary information in the labels of the output graph. For
an illustration of this algorithm, see Figure 4. Also notice that this algorithm
can be easily generalized to having more than two input graphs.
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Fig. 4. Intersection of two solution graphs by Algorithm 6

Apart from just computing mere intersections of sets of solutions, Algorithm
6 can also be used to solve equations given by the concatenation of two T-
functions:

f(g(x)) = y (8)

To solve this problem, just introduce some auxiliary variable z and apply Algo-
rithm 6 to the two solution graphs which can be constructed for the equations
f(z) = y and g(x) = z respectively.

Combining this idea (applied to the situation f = g) with some square-
and-multiply technique, allows for some quite efficient construction of a solution
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graph for an equation of the form f i(x) = y with some (small) fixed value i.
This may be of interest for example for cryptanalysing stream ciphers which are
constructed as suggested for example by Klimov in [9], but use T-functions with
some small narrowness instead of one of the functions proposed by Klimov which
seem to have a large narrowness.

5 Extensions of his Method

In many cryptographical systems the operations used are usually not restricted
to T-functions. Often such systems also include other basic operations, as, for
example, right bit shifts or bit rotations, which are quite similar, but not T-
functions according to Definition 1. Hence, systems of equations used in the
cryptanalysis of such ciphers usually cannot be solved directly by applying so-
lution graphs as presented in Sections 3 and 4. In this section we give some
examples of how such situations can be handled, for example by extending the
definition of a solution graph such that it is still applicable.

5.1 Including Right Shifts

Let us first consider a system of equations which includes only T-functions and
some right shift expressions x � r. This can be transformed by substituting
every appearance of x � r by an auxiliary variable zr and adding an extra
equation

zr � r = x ∧ (11 . . . 1︸ ︷︷ ︸
n−r

0 . . . 0︸ ︷︷ ︸
r

) (9)

which defines the relationship between x and zr. Then the resulting system is
completely described by T-functions and can be solved with a solution graph.

Here, similarly as when solving (8) some problem occurs: We have to add an
extra (auxiliary) variable z, which potentially increases the size of the needed
solution graph. This is even worse as the solution graph stores all possible val-
ues of z corresponding to solutions for the other variables, even if we are not
interested in them at all. This can be dealt with by softening Definition 3 to
generalized solutions graphs:

5.2 Generalized Solution Graphs

For a generalized solution graph we require every property from Definition 3 with
the exception that the labels of edges starting in one vertex are not required to
be pairwise distinct.

Then we can use similar algorithms as those described above, e.g. for reducing
the size or combining two graphs. But usually these algorithms are a little bit
more sophisticated: For example, for minimizing the size, it does not suffice to
consider equivalent vertices as defined in Definition 4. In a generalized solution
graph it is also possible that the sets of incoming edges are equal and, clearly, two

T
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such vertices with equal sets of incoming edges (which we will also call equivalent
in the case of general solution graphs) can also be merged. But this also means
that merging two equivalent vertices in layer l may not only cause vertices in
layer l − 1 to become equivalent, but also vertices in layer l + 1. Thus, in the
generalized version of Algorithm 2 we have to go back and forth in the layers to
ensure that in the end there are no equivalent vertices left.

This definition of a generalized solution graph allows to “remove” variables
without losing the information about their existence. This means, instead of
representing the set {(x, y) | f(x, y) = 0} with a solution graph G, we can
represent the set {x | ∃y : f(x, y) = 0} with a solution graph G′ which is
constructed from G by simply deleting the parts of the labels which correspond
to y. Of course, this does not decrease the size of the generalized solution graph
directly but (hopefully) it allows further reductions of the size.

5.3 Including Bit Rotations

Let us now take a look at another commonly used function which is not a T-
function, a bit rotation by r bits:

f(x) := x ≪ r (10)

If we would fix the r most significant bits of x, for example to some value c, then
this function can be described by a bit shift of r positions and a bitwise defined
function

f(x) := (x � r) ∨ c (11)

which is an r-narrow T-function. Thus, by looping over all 2r possible values for
c an equation involving (10) can also be solved by solution graphs.

If we use generalized solution graphs, it is actually possible to combine all 2r

such solution graphs to one graph, in which again the complete set of solutions is
represented: This can be done by simply merging all the roots and all the sinks
of the 2r solution graphs as they are clearly equivalent in the generalized sense.

Two examples of actual systems of equations which were solved by applying
solution graphs and the extensions from this section are given in Appendix B.

6 Conclusion

In this paper we defined a subclass of weak T-functions, the w-narrow T-
functions. We showed that systems of equations involving only w-narrow T-
functions (with small w) can be solved efficiently by using solution graphs and
thus such functions should be avoided in cryptographical schemes.

Let us stress again that this does not mean that the concept of using T-
functions for constructing cryptosystems is bad. One just has to assure that the
used T-functions are not too narrow. For example, it is a good idea to always
include multiplications and bit shifts of some medium size in the functions, as
those are examples of T-functions which are not very narrow.
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Additionally we presented some extensions to our proposal of a solution
graph. These extensions allow to use the solution graphs also in other con-
texts than pure T-functions, for example as a tool in the cryptanalysis of hash
functions.
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A Dobbertin’s Original Algorithm from the Attacks on
MD4, MD5 and RIPEMD

In this section we describe the algorithm used by Dobbertin in his attacks from
[3, 4, 5]. However, we do this using the same terminology as in the other sections
of the present paper to maximize the comparability.

Let S be a system of equations which can be completely described by T-
functions and let Sk denote the system of equations in which only the k least
significant bits of each equation are considered. As those k bits only depend on
the k least significant bits of all the inputs, we will consider the solutions of Sk

to have only k bits per variable as well.
Then, from the defining property of a T-function, the following theorem easily

follows:
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Theorem 4. Every solution of Sk is an extension of a solution of Sk−1.

This theorem directly leads to the following algorithm for enumerating all
the solutions of S.

Algorithm 7.

1. Find all solutions (having only 1 bit per variable) of S1.
2. For every found solution of some Sk, k ∈ {1, . . . , n−1}, recursively check which

extensions of this solution by 1 bit per variable are solutions of Sk+1.
3. Output the found solutions of Sn(= S).

An actual toy example application of this algorithm – finding the solutions
x of the equation S given by (x ∨ 00102) + 01102 = 00012 with n = 4 – is
illustrated in Figure 5: We start at the root of the tree and check whether 0 or
1 are possible values for [x]0, i.e. if they are solutions of S1 which is given by
([x]0 ∨ 0) + 0 = 1. Obviously 0 is not a solution of this equation and thus we
need not consider any more values for x starting with 0. But 1 is a solution of
S1, thus we have to check whether extensions (i.e. 012 or 112) are solutions of
S2: (x ∨ 102) + 102 = 012. Doing this recursively finally leads to the “tree of
solutions”, illustrated on the left hand side of Figure 5.
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Fig. 5. “Solution tree” for the equation (x ∨ 00102) + 01102 = 00012 with n = 4

If this method is implemented directly as described in Algorithm 7, it has
a worst case complexity which is about twice as large as that of an exhaustive
search, because the full solution tree of depth n has 2n+1−1 vertices. An example
of such a “worst case solution tree” is given in Figure 6. To actually achieve a
worst case complexity similar to that of an exhaustive search a little modification
is necessary to the algorithm: The checking should be done for complete paths
(as indicated by the grey arrows in the tree on the right hand side in Figure
5), which can also be done in one machine operation, and not bit by bit. This
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Fig. 6. “Solution tree” for the equation (01002 ⊕ (x+01012) )−(01002 ⊕ x ) = 11012

with n = 4

means, we would start by checking 00002 and recognize that this fails already in
the least significant bit. In the next step we would check 00012 and see that the
three least significant bits are okay. This means in the following step we would
only change the fourth bit and test 10012 which would give us the first solution.
All in all we would need only 7 checks for this example as indicated by the grey
arrows.

The worst case complexity of this modified algorithm (which is what was
actually implemented in Dobbertin’s attacks) is clearly 2n as this is the number
of leaves of a full solution tree. However, it is also quite clear, that in the aver-
age case, or rather in the case of fewer solutions, this algorithm is much more
efficient.

B Examples of Applications

In this section we present two examples of systems of equations which were
actually solved by using the techniques presented in this paper. They have both
appeared as one small part in an attempt to apply Dobbertin’s methods from
[3, 4, 5] to SHA-1. In this paper we concentrate on describing how these systems
were solved and omit a detailed description of their meanings.

The first system comes from looking for so-called “inner collisions” and in-
cludes 14 equations and essentially 22 variables R1, . . . , R13, ε3, . . . , ε11:

0 = ε3 + 1

0 = ε4 − (R̃3 ≪ 5 − R3 ≪ 5) + 1

Ch(R̃3, R2 ≪ 30, R1 ≪ 30) − Ch(R3, R2 ≪ 30, R1 ≪ 30) = ε5 − (R̃4 ≪ 5 − R4 ≪ 5) + 1

Ch(R̃4, R̃3 ≪ 30, R2 ≪ 30) − Ch(R4, R3 ≪ 30, R2 ≪ 30) = ε6 − (R̃5 ≪ 5 − R5 ≪ 5)

Ch(R̃5, R̃4 ≪ 30, R̃3 ≪ 30) − Ch(R5, R4 ≪ 30, R3 ≪ 30) = ε7 − (R̃6 ≪ 5 − R6 ≪ 5) + 1
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Ch(R̃6, R̃5 ≪ 30, R̃4 ≪ 30) − Ch(R6, R5 ≪ 30, R4 ≪ 30) = ε8 − (R̃7 ≪ 5 − R7 ≪ 5)

−(R̃3 ≪ 30 − R3 ≪ 30) + 1

Ch(R̃7, R̃6 ≪ 30, R̃5 ≪ 30) − Ch(R7, R6 ≪ 30, R5 ≪ 30) = ε9 − (R̃8 ≪ 5 − R8 ≪ 5)

−(R̃4 ≪ 30 − R4 ≪ 30) + 1

Ch(R̃8, R̃7 ≪ 30, R̃6 ≪ 30) − Ch(R8, R7 ≪ 30, R6 ≪ 30) = ε10 − (R̃9 ≪ 5 − R9 ≪ 5)

−(R̃5 ≪ 30 − R5 ≪ 30)

Ch(R̃9, R̃8 ≪ 30, R̃7 ≪ 30) − Ch(R9, R8 ≪ 30, R7 ≪ 30) = ε11 − (R̃10 ≪ 5 − R10 ≪ 5)

−(R̃6 ≪ 30 − R6 ≪ 30)

Ch(R̃10, R̃9 ≪ 30, R̃8 ≪ 30) − Ch(R10, R19 ≪ 30, R8 ≪ 30) = −(R̃11 ≪ 5 − R11 ≪ 5)

−(R̃7 ≪ 30 − R7 ≪ 30) + 1

Ch(R̃11, R̃10 ≪ 30, R̃9 ≪ 30) − Ch(R11, R10 ≪ 30, R9 ≪ 30) = −(R̃8 ≪ 30 − R8 ≪ 30)

Ch(R12, R̃11 ≪ 30, R̃10 ≪ 30) − Ch(R12, R11 ≪ 30, R10 ≪ 30) = −(R̃9 ≪ 30 − R9 ≪ 30)

Ch(R13, R12 ≪ 30, R̃11 ≪ 30) − Ch(R13, R12 ≪ 30, R11 ≪ 30) = −(R̃10 ≪ 30 − R10 ≪ 30) + 1

0 = −(R̃11 ≪ 30 − R11 ≪ 30) + 1

Here we use R̃i := Ri + εi for a compact notation, the word size is n = 32, and
the Ch in these equations stands for the bitwise defined choose-function

Ch(x, y, z) = (x ∧ y) ∨ (x ∧ z).

It was not possible to solve this system in full generality, but for the applica-
tion it sufficed to find some fixed values for ε3, . . . , ε11 such that there are many
solutions for the Ri and then to construct a generalized solution graph for the
solutions for R1, . . . , R13.

The choice for good values for some of the εi could be done by either theoret-
ical means or by constructing solution graphs for single equations of the system
and counting solutions with fixed values for some εi.
For example, from the solution graph for the last equation it is possible (as
described in Section 5.2) to remove the R11 such that we get a solution graph
which represents all values for ε11 for which an R11 exists such that

0 = −(R̃11 ≪ 30−R11 ≪ 30) + 1.

This solution graph shows that only ε11 ∈ {1, 4, 5} is possible. Then by inserting
each of these values in the original solution graph (by Algorithm 6) and counting
the possible solutions for R11 (by Algorithm 4) it can be seen that ε11 = 4 is the
best choice. Having fixed ε11 = 4 also the last but one equation includes only one of
the εi, namely ε10 (implicitly in R̃10). Then possible solutions for ε10 can be derived
similarly as before for ε11 and doing this repeatedly gave us some good choices for
ε11, ε10, ε9, ε8, ε7 and (using the first two equations) for ε3 and ε4.

Finding values ε5 and ε6 such that the whole system still remains solvable
was quite hard and could be done by repeatedly applying some of the tech-
niques described in this paper, e.g. by combining generalized solution graphs for
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different of the equations and removing those variables Ri from the graphs which
were no longer of any explicit use. This way we found four possible values for ε5

and ε6.
After fixing all the εi variables in a second step we were then able to construct

the generalized solution graph for the complete system of equations with the
remaining variables R1, . . . , R13. It contains about 700 vertices, more than 80000
edges and represents about 2205 solutions.

The second examplary system of equations appeared when looking for a so-
called “connection” and after some reduction steps it can be written as follows:

C1 = R9 + Ch(R12 ≪ 2, R11, R10)
C2 = (C3 −R10 −R11)⊕ (C4 + R9 ≪ 2)
C5 = (C6 −R11)⊕ (C7 + R10 ≪ 2− (R9 ≪ 7))
C8 = (C9 −R12)⊕ (C10 + R9 ≪ 2)

⊕(C11 + R11 ≪ 2− (R10 ≪ 7)− Ch(R9 ≪ 2, C12, C13))

In these equations the Ci are constants which come from some transformations of
the original (quite large) system of equations together with some random choices
of values. For this system we are interested in finding at least one solution for
R9, R10, R11, R12.

As the first three equations are quite simple and (after eliminating the rota-
tions) also quite narrow, the idea for solving this system was the following: First
compute a generalized solution graph for the first three equations which repre-
sents all possible solutions for R9, R10, R11 for which at least one corresponding
value for R12 exists. For this set of solutions we observed numbers of about 211 to
215 solutions. Then we could enumerate all these solutions from this graph and
for each such solution we just had to compute the value for R12 corresponding
to the last equation

R12 = C9 − (C8 ⊕ (C10 + R9 ≪ 2)
⊕(C11 + R11 ≪ 2− (R10 ≪ 7)− Ch(R9 ≪ 2, C12, C13)))

and check whether it also fulfilled the first equation. If we consider the first
equation with random but fixed values for R9, R10, R11 we see that either there
is no solution or there are many solutions for R12, as only every second bit of
R12 (on average) has an effect on the result of Ch(R12 ≪ 2, R11, R10). However,
since the values for R9, R10, R11 were chosen from the solution graph of the first
three equations there is at least one solution and thus the probabiliy that the
value for R12 from the last equation also fulfills the first, is quite good.

This way we succeded in solving this system of equations quite efficiently.
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Abstract. T-function is a relatively new cryptographic building block
suitable for streamciphers. It has the potential of becoming a substi-
tute for LFSRs, and those that correspond to maximum length LFSRs
are called single cycle T-functions. We present a family of single cycle
T-functions, previously unknown. An attempt at building a hardware
oriented streamcipher based on this new T-function is given.
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1 Introduction

The appearance of algebraic attack on streamciphers[5, 11, 12, 13] has certainly
made the designing of streamciphers a more difficult task. At the same time,
as presentations[7, 28] and discussions during a recent streamcipher workshop
has shown, the demand for streamciphers is declining. But, we have also seen at
the same workshop that at the very extremes, there are still genuine needs for
streamciphers. One case is when the cipher has to be ultra-fast(Gbps) in soft-
ware (on relatively good platforms), as in software routers. The other extreme,
namely where efficient hardware implemented ciphers for resource constrained
environment is needed, could also benefit from a good streamcipher design.

Most of the recent attempts at streamcipher constructions[30, 14, 31, 16, 15,
9, 10, 17, 6, 26, 29] are mainly focused on software, except for those based on
LFSRs. In particular, most of them demand a very large memory space to store
its internal state. If we turn to traditional designs that use bitwise LFSRs, which
could have advantages in hardware, we find that large registers have to be used
to counter algebraic attacks. In short, we have a lack of good hardware oriented
streamciphers at the moment. This paper is an attempt at filling this gap.

Few years ago, Klimov and Shamir started developing the theory of T-
functions[20, 21, 22]. A T-function is a function acting on a collection of memory
words, with a weak one-wayness property. It started out as a tool for blockci-
phers, but now, its possibility as a building block for streamciphers is drawing
attention.

An important class of T-functions consists of those that exhibit the single
cycle property. This is the T-function equivalent of maximum length LFSRs

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 68–82, 2005.
c© International Association for Cryptologic Research 2005
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and has potential to bring about a very fast streamcipher. Unfortunately only a
very small family of single cycle T-functions is known to the crypto community
currently.1

The main contribution of this work is to uncover a new class of single cycle
T-functions. It is a generalization of a small subset of the previously known single
cycle T-functions and it does show some good properties which the previous ones
did not. We also give an example of how one might build a cipher on top of this
new class of single cycle T-functions. Although previous T-functions targeted
software implementations, our T-function based streamcipher is designed to be
light and is suitable for constrained hardware environment.

The paper is organized as follows. We start by reviewing the basics of T-
functions. In Section 3, we look into the existing single cycle T-functions and
show that without the multiplicative part, which is not understood at all, it is a
very simple object, far from a random function. With this new way of viewing
existing T-functions, we give a new class of single cycle T-functions in Section 4.
A streamcipher example built on top of the new T-functions is introduced in the
following section. The last section concludes the paper.

2 Review of T-Functions

We shall review the basics of multi-word T-functions in this section. Readers
may refer to the original papers [20, 21, 22] for a more in-depth treatment.

Let us consider a gathering of m-many of n-bit words, which we denote by
xi (i = 0, . . . , m− 1). Our main interest lies in the case n = 32 and m = 4. As
a shorthand for multiple words, we shall often use the corresponding boldface
letter. For example, x = (xk)m−1

k=0 . The i-th bit of a word x is denoted by [x]i,
where we always count starting from 0. Seen as an integer, we have

x =
n−1∑
i=0

[x]i2i. (1)

The i-th bits of the m-tuple of words x are denoted collectively as [x]i. We
sometimes view [x]i also as an m-bit integer by setting

[x]i =
m−1∑
k=0

[xk]i2k. (2)

In reading the rest of this paper, it helps to view the various notations pictorially
as follows.

1 It seems T-function was already studied in the mathematics community under vari-
ous different names[3, 4].
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x =

⎛⎜⎜⎝
⎞⎟⎟⎠

x3

x2

x1

x0

↑
LSB

↑
MSB

=

← LSB

← MSB

[x]i [x]0

⎛⎜⎜⎝
⎞⎟⎟⎠

Accordingly, we shall sometimes refer to [x]i as the i-th column.

Definition 1. A (multi-word) T-function is a map

T : ({0, 1}n)m −→ ({0, 1}n)m, x �→ T(x) = (Tk(x))m−1
k=0

sending an m-tuple of n-bit words to another m-tuple of n-bit words, where each
resulting n-bit word is denoted as Tk(x), such that for each 0 ≤ i < n, the i-
th bits of the resulting words [T(x)]i are functions of just the lower input bits
[x]0, [x]1, . . . , [x]i.

We shall mainly be dealing with multi-word T-functions, as opposed to single-
word T-functions, which is the m = 1 case, and hence shall mostly omit writing
multi-word. Also, unless stated otherwise, we shall always assume a T-function
to be acting on m words of n-bit size. The set of words a T-function is acting
on is sometimes referred to as memory or register and the bit values it contains
are said to form a state of the memory.

Given a T-function T, one may fix an initial state x0 for the memory and
iteratively act T on it to obtain a sequence defined by

xt+1 = T(xt). (3)

Such a sequence will always be eventually periodic and if its periodic part passes
through all of the 2nm possible states the memory may take, the T-function is
said to form a single cycle. A single cycle T-function may serve as a good building
block for a streamcipher. To state results about single cycle T-functions, we need
a few more definitions.

Definition 2. A (multi-word) parameter is a map

α : ({0, 1}n)m −→ {0, 1}n, x �→ α(x)

sending an m-tuple of n-bit words to a single n-bit word such that for each
0 ≤ i < n, the i-th bit of the resulting word [α(x)]i is a function of just the
strictly lower input bits [x]0, [x]1, . . . , [x]i−1.

In other words, a parameter is a sort of multi-word to single-word T-function
for which the i-th output bit does not depend on the i-th input bits [x]i. When
restricted to just linear functions acting on a single word, T-functions are exactly
the upper triangular matrices and parameters correspond to the strictly upper
triangular matrices.
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Given a parameter α, and fixed 0 ≤ i < n, we may consider the bit value

B[α, i] =
(2i−1,...,2i−1)⊕

x=(0,...,0)

[α(x)]i. (4)

Notice that since [α(x)]i does not depend on any of the high indexed input bits,
going any higher in this direct sum would be meaningless. Also, note that [α(x)]0
is constant for all input x and the sum B[α, 0] is equal to this constant value. If
the value B[α, i] = 0 for all i, the parameter is said to be even. Likewise, if it is
1 for all i, the parameter is odd.

Currently, it seems that the only single cycle T-functions known to the crypto
community are based on the following theorem from [22].

Theorem 1. The T-function defined by setting T(x) = (Tk(x))m−1
k=0 , with

Tk(x) = xk ⊕ (αk(x) ∧ x0 ∧ x1 ∧ · · · ∧ xk−1) (5)

for k = 0, . . . , m− 1, exhibits the single cycle property, when each αk is an odd
parameter.

3 Analysis of an Example T-Function

The following example may be found in [22]. We shall try to give a clearer view
of the inner workings of this example.

Example 1. Consider the following T-function which acts on four 64-bit words.
Fix any odd number C0 and set C1 = 0x12481248, C3 = 0x48124812. Use the
notation a0 = x0 and ai+1 = ai ∧ xi+1 for i = 0, 1, 2. Then,

α = α(x) = (a3 + C0)⊕ a3 (6)

defines an odd parameter. Finally, the mapping

⎛⎜⎜⎝
x3

x2

x1

x0

⎞⎟⎟⎠ �→
⎛⎜⎜⎜⎝

x3 ⊕ (α ∧ a2)⊕ (2x0(x1 ∨ C1))
x2 ⊕ (α ∧ a1)⊕ (2x0(x3 ∨ C3))
x1 ⊕ (α ∧ a0)⊕ (2x2(x3 ∨ C3))
x0 ⊕ α ⊕ (2x2(x1 ∨ C1))

⎞⎟⎟⎟⎠ (7)

gives a single cycle T-function.

This example is not a direct application of Theorem 1, because of the last
term in each row that utilizes multiplications. But these last terms are even
parameters and it is possible to follow through the proof of Theorem 1 given
in [22] with them attached.
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Let us have a closer look at this example. Without the even parameter part,
it is almost identical to Theorem 1.⎛⎜⎜⎝

x3

x2

x1

x0

⎞⎟⎟⎠ �→
⎛⎜⎜⎜⎝

x3 ⊕ (α(x) ∧ x0 ∧ x1 ∧ x2)
x2 ⊕ (α(x) ∧ x0 ∧ x1)
x1 ⊕ (α(x) ∧ x0)
x0 ⊕ α(x)

⎞⎟⎟⎟⎠ . (8)

We will denote this simplified function by T for the moment. Now, let us look at
just the 0-th column. We know [α(x)]0 = 1 for any odd parameter and this can
also be checked directly from (6). Hence, as noted in [22], the map (8) restricted
to the 0-th column is

[T(x)]0 = [x]0 + 1 (mod 2m). (9)

Here, we are using the notation of (2). Let us move onto the higher bits. Since
all the odd parameters are set to be the same in (8), the mapping T may be
described by

[T(x)]i =

{
[x]i if [α(x)]i = 0,
[x]i + 1 (mod 2m) if [α(x)]i = 1.

(10)

In other words, the role of the odd parameter α is to decide whether or not to
apply the map

[x]i �→ [x]i + 1 (mod 2m) (11)

to the i-th bit column.
In the extreme case when C0 = 1 in the definition (6) for the odd parameter,

we have [α(x)]i = 1 if and only if [xk]j = 1 for all k and all j < i. So the
mapping (11) is applied to the i-th bit column if and only if all 4i of the strictly
lower bits are filled with 1. Hence the map (8) literally defines a counter (in
hexadecimal numbers). It runs through all the 24·64 possible values, incrementing
the memory by 1 at each application of T.

The mapping (8) is more complex when the constant C0 is bigger, but this
does not seem to give a fundamental difference. Using a more complex odd
parameter would make (8) a lot more random-like. Without this, the real reason
for (7) producing a sequence which passes all the statistical tests lies in the even
parameter part.

Remark 1. The paper [27] gives an attack on a (very basic) streamcipher base
on (7). Essentially, they analyze the multiplicative part, and find a way to apply
this technique to (7). From the viewpoint of their attack, the components of (7),
excluding the multiplicative part, contribute very little to the security of the
system. Arguments of this section show that this is a natural consequence of its
inner workings.
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4 A New Class of T-Functions

Arguments of the previous section lead us naturally to the following idea. What
would happen if we replaced mapping (11) with a more general mapping?

Given an m×m S-box, S : {0, 1}m �→ {0, 1}m, define

S : ({0, 1}n)m −→ ({0, 1}n)m, x �→ S(x)

by setting
[S(x)]i = S([x]i).

Here, we are using the notation of (2), so that the bold face S acts on each and
every column of the registers. We say that an S-box has the single cycle property
if its cycle decomposition gives a single cycle. That is, starting from any point,
if we iteratively act S, we end up going through all possible elements of {0, 1}m.

Certainly, S will not define a single cycle T-function, even when S is of single
cycle. So let us start by first defining some logical operations on multi-words.
Let x = (xk)m−1

k=0 and y = (yk)m−1
k=0 , be two multi-words. Define x⊕y by setting

x⊕ y = (xk ⊕ yk)m−1
k=0 .

Also, for a (single) word α, define the multi-word

α · x = (α ∧ xk)m−1
k=0 .

The notation ∼ α will denote the bitwise complement of α.

Theorem 2. Let S be a single cycle S-box and let α be an odd parameter. If So

is an odd power of S and Se is an even power of S, the mapping

T(x) =
(
α(x) · So(x)

)
⊕
(
(∼ α(x)) · Se(x)

)
.

defines a single cycle T-function.

Proof. That this is a T-function is easy to check. Notice that due to its definition,
any T-function may be restricted to just the lower bits. It suffices to prove that,
when restricted to the lower bits [x]0, [x]1, . . . , [x]i−1, the period of the above
map is 2m·i. This will be shown by induction.

The mapping T can be better understood when it is written as

[T(x)]i =

{
Se([x]i) if [α(x)]i = 0,
So([x]i) if [α(x)]i = 1.

(12)

In particular, since we always have [α(x)]0 = 1, if we restrict T to the 0-th
column of the registers, it acts as just So regardless of the input x. Notice that
any odd power of S also has the single cycle property. Hence the period of T is
2m, when restricted to [x]0. This gives us the starting point.

So suppose, as an induction hypothesis, that the period of T, restricted to
the lower bits [x]0, . . . , [x]i−1, is 2m·i. The period of T, restricted to the next step
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[x]0, . . . , [x]i, must be a multiple of 2m·i. Now, with the parameter α being odd,
(12) shows that when T is consecutively applied to the bits [x]0, . . . , [x]i exactly
2m·i times, So and Se are both applied an odd number of times to [x]i. In all,
this is equivalent to applying S to [x]i an odd number of times. Since an odd
number is relatively prime to the period 2m of S, the period of T restricted to
[x]0, . . . , [x]i must be 2m·(i+1). This completes the induction step and the proof.

Expression (12) shows that this new T-function may be viewed as a twisted
product of small S-boxes, each acting on a single column of memory.

The reader may already have noticed that allowing for odd powers of single
cycles S-boxes is not really any more general than allowing for just the (single
power of) single cycle S-boxes. If we further restrict the above theorem to the
case when the even power used is zero, we have the following corollary.

Corollary 1. Given a single cycle S-box S and an odd parameter α, the follow-
ing mapping defines a single cycle T-function.

x �→ x⊕
(
α(x) · (x⊕ S(x))

)
.

5 T-Function Based Streamcipher; TSC-1

In this section, we propose a very bare framework for a streamcipher based on
Theorem 2. A distinguishing attack on this example of very low complexity is
already known[19] and the authors no longer believe this cipher to be secure,
but we include this as a reference for further developments in this direction.

Since the work [27] has shown that disclosing parts of the raw memory state
could be fatal, we want to hide the memory while producing output from this
T-function. So we shall use the T-function as a substitute for an LFSR in a filter
model.

5.1 The Specification

Specification of the cipher will be given by supplying a filter function in addition
to fixing various components for the T-function.

Fix n = 32 and m = 4, that is, we work with four 32-bit words, for a total
internal state of 128 bits. Define an odd parameter by setting

α(x) = (p + C)⊕ p⊕ 2s, (13)

where2

C = 0x12488421, p = x0 ∧ x1 ∧ x2 ∧ x3, and s = x0 + x1 + x2 + x3.

2 The constant 0x12488421 was chosen so that 1s are denser at the higher bits than
at the lower bits. This will help it quickly move away from the all-zero state, should
it occur.
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All additions are done modulo 232. This is equal to (6), except that we have
added the even parameter 2s to allow for stronger inter-column effects. Define a
4× 4 S-box S, as given by the following line written in C-style.

S[16] = {3,5,9,13,1,6,11,15,4,0,8,14,10,7,2,12}; (14)

One may check easily that this is a single cycle S-box. Using this S-box, let us
set So = S and Se = S2. We can now define a single cycle T-function T, through
the use of Theorem 2.

To actually obtain the keystream, use the filter

f(x) = (x0≪9 + x1)≪15 + (x2≪7 + x3) (15)

on the memory bits, after each application of T. This will give us a single 32-bit
block of keystream per action of the T-function. Here, the symbol ≪ denotes
left rotation, and the additions should be done modulo 232. Going back to the
notation of (3), the output word produced at time t may be written as f(xt).

5.2 Naive Security

Period We already know that the period of the state registers is 2128, as guar-
anteed by the single cycle property. The output itself also has a period of 2128

words.
To see this, first note that the period has to be a divisor of 2128. Now, initialize

the register content with the all zero state and consider what the content of the
registers would be after 2124 iterated applications of the T-function. Since the
period of the T-function restricted to the lower 31 columns is 2124, all columns
except the most significant column will be zero. Furthermore, when observed
every 2124 iterations apart, due to description (12) and the definition of an odd
parameter, the change of the most significant column follows some fixed odd
power of the S-box, which is of cycle length 16. Explicit calculation of the 16
keystream output words for each odd power of the S-box confirms that, in all
odd power cases, one has to go through all 16 points before reaching the starting
point. Hence the period of the cipher is 16 · 2124 = 2128.

Actually, for a general single cycle T-function, one can always show that at
least one bit position in the register will show period equal to the T-function.
When any mildly complicated filter is attached to such a T-function, the output
keystream has a high chance of inheriting this property and one should be able
to show some result on the period of the whole filter generator. For example, the
cipher TF-1[23], can be shown to have a period of at least 2254.

Maximum security level Given a single word block of keystream, guessing any
three words (96 bits) of memory determines the remaining word uniquely. And
it suffices to look at the next three word blocks of keystream to check if the guess
is correct. Hence, it is clear that this proposal cannot provide more than 96-bit
security.
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Bit-flip property In addition to imposing the single cycle property, we had chosen
the S-box (14) to satisfy the following conditions.3

1. At the application of S, each of the four bits has bit-flip probability of 1
2 .

2. The same if true for S2, the square of S.

In more exact terms, the first condition states that for each i = 0, 1, 2, 3,

#{ 0 ≤ t < 16 | the i-th bit of t⊕ S(t) is 1} = 8.

Due to this property, regardless of the behavior of the odd parameter α, every
bit in the register is guaranteed a 1

2 bit-flip probability. This is one thing that
wasn’t satisfied by (8) and which was only naively expected of (7).

Rotations Rotations used in the filter serve two main purposes. The first is to
ensure that output from the same S-box, i.e., bits from the same column, do not
contribute directly to the same output bit. We want contributions to any single
output bit to come from bits that change independently of each other.

The other reason is to remove the possibility of relating a part of the output
with a part of the memory that allows some sort of separate handling in view
of the action of T-function. In particular, this stops the guess-then-determine
attack. Difficulty of correlation attacks can also be understood from this view-
point. In the last step of a correlation attack, one needs to guess a part of the
state bits and compare calculated outputs with the keystream, checking for the
occurrence of expected correlation. In our case, any correlation with a single
output bit will involve multiple input bits and at least one of them will come
near the high ends of the registers. This will force one to guess quite a large part
of the registers to be able to apply T-function even once.

Misc We have done most of the tests presented in [2] and have verified that this
proposal gives good statistical results. As the S-boxes are nonlinear, the most
dangerous attack on streamciphers, the algebraic attack, seems to be out of the
question.

With our T-function based filter model, one can view the randomness of
keystream as originating from the T-function and as being amplified through
the filter. Compared with LFSR based filter models, it seems fair to say that
the randomness at the source is better with T-functions. In the Appendix, we
present another design that shifts the burden of producing randomness more to
the filter.

5.3 Implementation

Let us first consider the cipher’s efficiency in hardware. Given a single 4-bit input
t = t0 + 2t1 + 4t2 + 8t3, the output u = u0 + 2u1 + 4u2 + 8u3 of S(t) for the

3 S-box (14) enjoys the added property that S6, S10, S14, and all odd powers of S also
exhibit the 1

2
bit-flip probability.
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S-box (14) may be written as follows. Each line represents a single output bit as
a function of four input bits.

u3 = t1 ⊕ (t3 ∧ t2 ∧ t̄0)
u2 = t0 ⊕ (t3 ∧ t̄2 ∧ t̄1)
u1 = t2 ⊕ (t3 ∧ t1 ∧ t0)⊕ (t̄3 ∧ t̄1 ∧ t̄0)
u0 = t̄3 ⊕ (t2 ∧ t̄1 ∧ t0)

(16)

Here, the bar denotes bit complement. Similarly, the bits of S2(t) = v0 + 2v1 +
4v2 + 8v3 may be calculated as follows.

v3 = t2 ⊕ (t̄3 ∧ t̄1 ∧ t̄0)
v2 = t̄3 ⊕ (t2 ∧ t̄1 ∧ t0)⊕ (t̄2 ∧ t1 ∧ t̄0)
v1 = t0 ⊕ (t̄3 ∧ t2 ∧ t1)
v0 = t̄1 ⊕ (t3 ∧ t2 ∧ t̄0)⊕ (t̄3 ∧ t̄2 ∧ t0)

(17)

We had deliberately chosen the S-box so that these expressions are simple.4

For sake of simplicity, let us assume that the logical operations NOT, AND,
and XOR all take the same time in a hardware implementation. Even for a
very straightforward implementation of (16) and (17), the critical path for the
simultaneous calculation of S(t) and S2(t) contains only 4 logical operations.

In most hardware implementations, this takes a lot shorter than the time
required for a single 32-bit addition, an algebraic operation. Hence the calcu-
lation of α, given by (13), whose critical path consists of two 32-bit additions
and a single XOR, will take longer than the S-box calculation. In all, the total
time cost of the T-function given by Theorem 2 is two 32-bit additions and four
logical bit operations.

The filter (15), taking two 32-bit additions, may be run in parallel to the
T-function, so our cipher will produce 32-bits of keystream for every clock tick
that allows for two 32-bit additions and four logical bit operations.

Thus a straightforward approach will give us a very fast hardware imple-
mentation. For example, in an ASIC implementation that uses a 32-bit adder of
modest delay time 0.4ns, the cipher will run at somewhere around 32 Gbps. The
total cost for such a rough implementation is given in Table 1.

For lack of a good hardware oriented streamcipher, let us try to compare
this implementation cost with that of a summation generator on four 256-bit
LFSRs. Results of [24] show that this may be broken within time complexity
of 277 ∼

(
4·256

3

)log2 7
. Even this weak summation generator needs 1024 flip-flops,

just to get started on the four LFSRs. This will already be larger than what we
have in Table 1.

4 We have rejected S-boxes that contained wholly linear expressions. But even such
S-boxes might be used when this cipher is better understood.
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Table 1. Implementation const of TSC-1

register 128×(flip-flop)

S-box 32×(11 XOR, 22 AND, 20 NOT)

odd parameter 4×(32-bit addition), 32×(2 XOR, 3 AND)

filter 3×(32-bit addition)

the rest 32×(1 XOR, 8 AND, 1 NOT)

Actually, some tricks may be used to reduce the gates needed for S-box
implementation without impacting speed. For example, if we use the expression

y : = (t̄1 ∧ (t2 ∧ t0))⊕ t3

z : = t̄1 ∨ (t2 ∨ t0)
u0 = ȳ

v2 = y ⊕ z,

calculation of u0 and v2 may be done in 2 XOR, 2 AND, 2 OR, and 2 NOT,
whereas, it was carelessly counted as 3 XOR, 6 AND, and 6 NOT in Table 1.

A very small but slower implementation might use just one or two 4 × 4 S-
boxes, and implementations that come somewhere in between are also possible,
allowing for a very wide range of implementation choices.

Although we have designed this cipher mainly for hardware, its performance
in software is not bad. Using the standard bit-slice technique for S-boxes with
the above polynomial expressions (16) and (17), we achieve speeds of up to 1.25
Gbps on a Pentium IV 2.4GHz, Windows XP (SP1) platform using Visual C++
6.0(SP6). In comparison, the Crypto++ Library[1] cites a speed of 113 MBps
for RC4 on a Pentium IV 2.1GHz machine. Scaled up for 2.4GHz, this is only
1.03 Gbps.

6 Conclusion

We have given an analysis of the generic single cycle T-function previously
known. With a better understanding of this T-function, we were able to present
a new class of single cycle T-functions.

Compared to the old T-function (Theorem 1), our T-function (Theorem 2)
certainly gives a better column mixing. Also, unlike (8), which is based on the
old T-function, the bit-flip probability of the register bits under the action of
our new T-function construction can be manipulated, and even made equal to
1
2 , through proper selection of S and α.

On the other hand, unlike previous T-functions, our new T-function does not
allow for the addition of an even parameter. This, we admit, is a very disappoint-
ing characteristic. But we would like to take the position that the multiplicative
even parameter is the less understood part of previous T-function(Example 1),
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while being at the very core of its randomness. And as we saw in our example
ciphers, the reduced randomness of the register contents can be compensated for
by an appropriate use of the filter function.

We have also presented an example cipher which shows the possibility of using
T-functions to build hardware oriented streamciphers. Our T-function allows for
a wide range of implementation choices, so that the final cipher could be either
fast or of small footprint in hardware.
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A T-Function Based Streamcipher; TSC-2

A streamcipher based on Corollary 1 will be given in this section.5 At the time
of this writing, this example cipher is known to be insecure[19]. It is included in
this paper for reference purposes only.

5 This example cipher was presented at the SASC workshop. Readers may find more
detail, including an example C-code, in [18].
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Compared to TSC-1, this cipher example will be lighter in hardware at
slightly reduced speed and faster in software. As with TSC-1, we will provide a
filter function in addition to fixing various components for the T-function.

A.1 The Specification

Fix n = 32 and m = 4. Define an odd parameter by setting

α(x) = (p + 1)⊕ p⊕ 2s, (18)

where
p = x0 ∧ x1 ∧ x2 ∧ x3 and s = x0 + x1 + x2 + x3.

Define a 4× 4 S-box S as follows.

S[16] = {5,2,11,12,13,4,3,14,15,8,1,6,7,10,9,0}; (19)

One may check easily that this is a single cycle S-box. We can now define a single
cycle T-function T, through the use of Corollary 1.

To actually obtain the keystream, use the filter

f(x) = (x0≪11 + x1)≪14 + (x0≪13 + x2)≪22 + (x0≪12 + x3) (20)

on the memory bits, after each application of T. This will give us a single 32-bit
block of keystream per action of the T-function.

A.2 Naive Security

Most of the arguments of Section 5.2 carry over to TSC-2, word for word. But
arguments concerning the bit-flip probability needs to be redone.

With a T-function following the construction of Corollary 1, it is difficult
to obtain a 1

2 bit-flip probability for all the memory bits. If this non-randomly
characteristic were to show unfiltered in the final keystream, we could obtain
a distinguishing attack. So we took care to make sure one word of memory
displayed the 1

2 bit-flip probability and used it to ensure that the final keystream
showed the same characteristic. Let us explain this in more detail.

The S-box (19), in addition to meeting the single cycle property, satisfies the
following.

– An even number is sent to an odd number and vice versa.

In other words, the LSB (among the four bits in a single column of memory) is
flipped on every application of S. To see the bit-flip probability of T itself, we
should next look at how often S is applied to each column.

Lemma 1. The odd parameter (18) satisfies

| 1
2
− probx([α(x)]i = 1) | = 1

24i

for all i > 0.
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This lemma, which may be proved directly, tells us that except for in the lower
few bits, each output bit of α is equal to 1 almost half of the time. Recalling
description (12) of T together with the bit-flip characteristic of S, we conclude
that bits of memory x0 has bit-flip probability close to 1

2 except at the lower few
bits.

Now, the 32-bit addition operation, seen at each bit position, is an XOR of
two input bits and a carry bit, so we may apply the Piling-up Lemma[25] to
argue that for each i = 1, 2, 3, the bits of

x0≪k + xi

will have bit-flip probability very close to 1
2 , except maybe at the points where

lower bits of x0 was used. What discrepancy these bits may show from changing
one half of the time disappears, once again through the use of Piling-up Lemma,
when these values are rotated relative to each other and added together to form
the final output (20). The rotation, while allowing the mixing of lower bits of x0

with higher bits, also gains independence of the XORed bits needed in applying
the Piling-up Lemma.

Using the explicit probability stated by Lemma 1, we have checked that a
straightforward distinguishing attack based on the bit-flip probability of (single
T action on) register contents is not possible.

A.3 Implementation

As in TSC-1, the S-box (19) was chosen with its efficient implementation in
mind. The mapping t �→ t⊕S(t) allows for an efficient bit slice realization. Also
note that because of the even-odd exchange condition, the LSB of t⊕ S(t) will
always be 1, leaving only 3 bits to be calculated.

Hardware implementation of TSC-2 will be slightly slower compared to that
of TSC-1, because the output filter now exhibits the critical path of three 32-
bit additions. But we have halved the count of S-boxes to obtain a lower total
implementation cost.

In software, TSC-2 runs on a Pentium-IV 2.4 GHz machine with code com-
piled using Visual C++ 6.0 (SP6) at speeds over 1.6 Gbps. This is over 1.6 times
faster than the speed for RC4 given in [1].
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Abstract. In this paper we present a new class of stream ciphers based
on a very simple mechanism. The heart of our method is a Feedback
with Carry Shift Registers (FCSR) automaton. This automaton is very
similar to the classical LFSR generators, except the fact that it performs
operations with carries. Its properties are well mastered: proved period,
non-degenerated states, good statistical properties, high non-linearity.

The only problem to use such an automaton directly is the fact that
the mathematical structure (2-adic fraction) can be retrieved from few
bits of its output using an analog of the Berlekamp-Massey algorithm.

To mask this structure, we propose to use a filter on the cells of the
FCSR automaton. Due to the high non-linearity of this automaton, the
best filter is simply a linear filter, that is a XOR on some internal states.
We call such a generator a Filtered FCSR (F-FCSR) generator.

We propose four versions of our generator: the first uses a static filter
with a single output at each iteration of the generator (F-FCSR-SF1). A
second with an 8 bit output (F-FCSR-SF8). The third and the fourth are
similar, but use a dynamic filter depending on the key (F-FCSR-DF1 and
F-FCSR-DF8). We give limitations on the use of the static filter versions,
in scope of the time/memory/data tradeoff attack.
These stream ciphers are very fast and efficient, especially for hardware
implementations.

Keywords: stream cipher, pseudorandom generator, feedback with carry
shift register, 2-adic fractions.

1 Introduction

Linear Feedback Shift Registers (LFSR) are the most popular tool used to design
fast pseudorandom generators. Their properties are well known, among them the
fact that the structure of an LFSR can be easily recovered from his output by
the Berlekamp-Massey algorithm. Many methods have been used to thwart the
Berlekamp-Massey attack because the high speed and simplicity of LFSRs are
important benefits.

Feedback with Carry Shift Registers (FCSR) were introduced by M. Goresky
and A. Klapper in [7]. They are very similar to classical Linear Feedback Shift
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Registers (LFSR) used in many pseudorandom generators. The main difference
is the fact that the elementary additions are not additions modulo 2 but with
propagation of carries. This generator is almost as simple and as fast as a LFSR
generator. The mathematical model for FCSR is the one of rational 2-adic num-
bers (cf. [9, 10]). This model leads to proved results on period and non degenera-
tion of internal states of the generator. It inherits the good statistical properties
of LFSR sequences.

Unfortunately, as for the LFSR case, it is possible to recover the structure
of a sequence generated by an FCSR (cf. [8, 2],[1]). To avoid this problem, we
propose to use a filter on the cells of the FCSR automaton. Since this automaton
has good non linear properties, the filter is simply a linear function, i.e. a XOR
on some cells. This method is very efficient for practical implementations.

First we describe the FCSR automaton and recall the properties of its output.
For applications, we propose an automaton with a key of 128 bits in the main
register.

Then we present the different versions of our generator with a detailed secu-
rity analysis in each case. For the F-FCSR-SF1 version, we show that the algebraic
attack is not possible and we describe some dedicated attacks. For the proposed
parameters, this attack is more expensive than the exhaustive one. The main re-
striction to the use of this version is the fact that the cost of the time/memory/data
tradeoffs attack is O(298), which is less than the exhaustive attack.

With the F-FCSR-SF8 version, we explain how our automaton can be filtered
in order to obtain an 8-bit output at each iteration. The problem on designing
a good filter in that situation is discussed. This leads to some problems on
its design. This is why we recommend to use the F-FCSR-DF8 version of our
generator to perform a 8-bit output system with high level of security.

In the dynamic filter versions of our generator, we substitute to the static
filter a dynamic one, i.e. depending on the secret initialization key. This method
increases the cost of the time/memory/data tradeoffs attack. This cost becomes
O(2162) for a 128-bit key. Moreover this dynamic filter avoids all 2-adic and al-
gebraic attacks. In particular for the 8-bit output version, it avoids some attacks
on filter combinations. For practical applications, we propose to use the S-box of
Rijndael in order to construct the dynamic filter. This method is very efficient,
and generally, this box is already implemented.

In the last section, we explain how it is possible to use our generators as
stream ciphers with IV mode of size 64 bits. The 128-bit key is used to initialize
the main register, and the initial vector is used to initialize the carries register.
For some dedicated applications, we also propose to use a key of 96 bits with an
IV of 64 bits.

2 The FCSR Automaton

We first recall the properties of an FCSR automaton used to construct our
pseudorandom generators: an FCSR automaton performs the division of two
integers following the increasing powers of 2 in their binary decompositions.
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This mechanism is directly related to the theory of 2-adic fractions. For more
theoretical approach, the reader could refer to [11, 7].

The main results used here are the following:

• Any periodic binary sequence can be expressed as a 2-adic fraction p/q,
where q is a negative odd integer and 0 ≤ p < |q|.

• Conversely, if a periodic binary sequence is generated from a 2-adic fraction
p/q, then the period of this sequence is known and is exactly the order of 2
modulo q.

• It is easy to choose a prime number q such as the order of 2 is exactly
T = |q|−1, and therefore the period generated by any initial value 0 < p < |q|
is exactly T . So, in the rest of this paper, we suppose that q is such that
2128 < |q| < 2129 and that the condition on the order of 2 is always satisfied
in order to guarantee a period greater than 2128.

• If p and q are integers of ”small size”, i.e. 128 bits for p and 129 bits for q,
the sequences p/q looks like random sequences of period T in terms of linear
complexity (but it remains false for its 2-adic complexity (i.e. the size of q)).

From now, we suppose that the FCSR studied in this section verifies the
following conditions: q < 0 ≤ p, p < −q, p =

∑k−1
i=0 pi2i, q = 1 − 2d and

d =
∑k−1

i=0 di2i.
p will be the initial (secret) state of the automaton whereas q will be the

equivalent of the ”feedback polynomial” of a classical LFSR.

2.1 Modelization of the Automaton

If q is defined as above, the FCSR generator with feedback prime q can be
described as a circuit containing two registers:

• The main register M with k binary memories (one for each cell), where k is
the bitlength of d, that is 2k−1 ≤ d < 2k.

• The carry register C with � binary memories (one for each cell with a � at
its left) where �+1 is the Hamming weight of d. Using the binary expansion∑k−1

i=0 di2i of d, we put Id = {i | 0 ≤ i ≤ k − 2 and di = 1}. So � = #Id. We
also put d∗ = d− 2k−1.

We will say that the main register contains the integer m =
∑k−1

i=0 mi2i when
it contains the binary values (m0, . . . , mk−1). The content m of the main register
always satisfies 0 ≤ m ≤ 2k − 1. In order to use similar notation for the carry
register, we can think of it as a k bit register where the k−l bits of rank not in Id

are always 0. The content c =
∑

i∈Id
ci2i of the carry register always satisfies

0 ≤ c ≤ d∗.

Example 1. Let q = −347, so d = 174 = 0xAE, k = 8 and � = 4. The following
diagram shows these two registers:
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m(t) m7 m6 m5 m4 m3 m2 m1 m0� � � � � � � �� � � � �
� � � �

c(t) 0 0 c5 0 c3 c2 c1 0

� � � �
� � � �

d 1 0 1 0 1 1 1 0

where � denotes the addition with carry, i.e., it corresponds to the following
scheme in hardware:

ci

��

��
�a
�b
�c(t−1)

� s=a⊕b⊕c(t−1)
c(t)=ab⊕ac(t−1)⊕bc(t−1)

�

Transition Function. As described above, the FCSR circuit with feedback
prime q is an automaton with 2k+l states corresponding to the k + l binary
memories of main and carry registers. We say that the FCSR circuit is in state
(m, c) if the main and carry registers contain respectively the binary expansion
of m and of c.

Suppose that at time t, the FCSR circuit is in state (m(t), c(t)) with m =∑k−1
i=0 mi(t)2i and c =

∑k−1
i=0 ci(t)2i. The state (m(t + 1), c(t + 1)) at time t + 1

is computed using:

• For 0 ≤ i ≤ k − 2 and i /∈ Id

mi(t + 1) := mi+1(t)
• For 0 ≤ i ≤ k − 2 and i ∈ Id

mi(t + 1) := mi+1(t)⊕ ci(t)⊕m0(t)
ci(t + 1) := mi+1(t)ci(t)⊕ ci(t)m0(t)⊕m0(t)mi+1(t)

• For the case i = k − 1
mk−1(t + 1) := m0(t).

Note that this transition function is described with (at most) quadratic
boolean functions and that for all three cases mi(t + 1) and ci(t + 1) can be
expressed with a single formula:

mi(t + 1) := mi+1(t)⊕ dici(t)⊕ dim0(t)

ci(t + 1) := mi+1(t)ci(t)⊕ ci(t)m0(t)⊕m0(t)mi+1(t)

if we put mk(t) = 0 and ci(t) = 0 for i not in Id.
We now study the sequences of values taken by the binary memories of the

main register, that is the sequences Mi = (mi(t))t∈N, for 0 ≤ i ≤ k − 1.
The main result is the following theorem:

Theorem 1. Consider the FCSR automaton with (negative) feedback prime q =
1− 2d. Let k be the bitlength of d. Then, for all i such that 0 ≤ i ≤ k − 1, there
exists an integer pi such that Mi is the 2-adic expansion of pi/q. More precisely,
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these values pi can be easily computed from the initial states mi(0) and ci(0)
using the recursive following formulas:

pi =
{

qmi(0) + 2pi+1 if di = 0
q
(
mi(0) + 2ci(0)

)
+ 2(pi+1 + p0) if di = 1.

If we consider a prime divisor q such that the period is exactly T = (|q|−1)/2,
the sequences Mi are distinct shifts of a same sequence (e.g. 1/q), but each shift
amount depends on the initial values of the main register and the carry register,
and looks like random shifts on a sequence of period T (remember that, for
applications T  2128).

2.2 Hardware and Software Performances of the FCSR

2.2.1 Hardware Realization
As we have just seen before, we could directly implement in hardware the struc-
ture of an FCSR using a Galois architecture. Even if the needed number of
gates is greater, the speed of such a structure is equivalent to the one of an
LFSR.

2.2.2 Software Aspects
The transition function can also be described in pseudocode with the following
global presentation expressing integers m(t), c(t) instead of bits mi(t), ci(t) more
suitable for software implementations.

If ⊕ denotes bitwise addition without carries, ⊗ denotes bitwise and, shift+
the shift of one bit on the right, i.e. shift+(m) = �m(t)/2� and par is the parity
of a number m (1 if m is odd, 0 if it is even):

m(t + 1) := shift+(m(t))⊕ c(t)⊕ par(m)d

c(t + 1) := shift+(m(t))⊗ c(t)⊕ c(t)⊗ par(m)d⊕ par(m)d⊗ shift+(m(t))

And the pseudoalgorithm could be written as:
b := par(m) (boolean)
a := shift+(m)
m := a⊕ c
c := a⊗ c
if b = 1 then

c := c⊕ (m⊗ d)
m := m⊕ d

end if
The number of cycles needed to implement the FCSR in software seems to

be twice greater than the one required for an LFSR but as we will see in the
following section, due to the very simplicity of our filtering function, the general
speed in software of our Filtering FCSR might be more efficient than usual LFSR
based generators.
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2.2.3 Parameters of the FCSR Automaton for Designing the Stream
Ciphers

For a cryptographic use with a security greater than 2128, we recommend the
use of a negative retroaction prime −q, corresponding to k = 128. This implies
that 2128 < |q| < 2129 − 1.

In order to maximize the period of the generated sequence, the order of 2
modulo q must be maximal i.e. equals to |q|−1. Moreover, to avoid some potential
particular cases, we propose to choose a prime q such that (|q| − 1)/2 is also a
prime.

The FCSR retroaction prime must be public. We propose
−q = 493877400643443608888382048200783943827 (1)

= 0x1738D53D56FC4BFAD3D0C6D3430ADD893

The binary expansion of d = (|q|+ 1)/2 is
10111001 11000110 10101001 11101010 10110111 11100010 01011111 11010110
10011110 10000110 00110110 10011010 00011000 01010110 11101100 01001010.
Its Hamming weight is 69 and then there are � = 68 carry cells (the Hamming
weight of d∗ = d− 2128) and k = 128 cells in the main register.

3 Design of F-FCSR : Filtered FCSR Automaton with a
Static Filter

As for the LFSRs, a binary sequence generated by a single FCSR can not be
used directly to produce a pseudorandom sequence (even if the output bits have
good statistical properties and high linear complexity), since the initial state
and the 2-adic structure can be recovered using a variant of the Berlekamp-
Massey algorithm [8, 2]. So, we propose in this section to filter the output of an
FCSR with two appropriate static functions and we prove the efficiency and the
resistance against known attacks of those two constructions.

3.1 The F-FCSR-SF1 : One Output Bit

How to Filter An FCSR Automaton.
For the LFSR case many tools have been developed to mask the structure of
the generator, by using boolean functions with suitable properties (see for ex-
ample [12, 4]) to combine several LFSRs, by using combiners with memory or by
shrinking the sequence produced by an LFSR.

It is possible to use similar methods with an FCSR generator, but with a very
important difference: since an FCSR generator looks like a random generator for
the non linear properties, it is not necessary to use a filter function with high
non linearity.

Then the best functions for filtering an FCSR generator are linear functions:
f : GF (2)n → GF (2), f(x1, . . . , xn) =

⊕n
i=1 fixi, fi ∈ GF (2).

As studied previously, the sequence Mi observed on the i-th dividend register
is a 2-adic fraction, with known period, good statistical properties and looks like
a random sequence except from the point of view of 2-adic complexity.
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The sequences Ci (with i ∈ I∗d ) produced by the carry register are not so
good from a statistical point of view: these sequences are probably balanced,
however, if a carry register is in the state 1 (resp. 0), it remains in the same
state 1 (resp. 0) with a probability 3/4 since each of the two other entries of
the corresponding addition box corresponds to 2-adic fractions and produces a
1 with a probability approximatively 1/2. It is sufficient to have only one more
1 to produce a 1 in the carry register.

These remarks lead to filter only on the k cells mi(t) of the main register,
not on the cells of the carry register.

To modelize our linear filter, we consider a binary vector F = (f0, . . . , fk−1)
of length k.

The output sequence of our filtered FCSR is then

S = (s(t))t∈N, where s(t) =
k⊕

i=1

fi ·mi(t).

The extraction of the output from the content of the main register M and
the filter F can be done using the following algorithm:
S := M ⊗ F
for i := 6 to 0 do

S := S ⊕ shift+2i(S)

Output: par(S)
It needs 7 shifts, 7 Xor and 1 And on 128-bit integers. So, the proposed

F-FCSR is very efficient in hardware.

Design of the Static Filter for the F-FCSR-SF1 Stream Cipher. Let
kF be the integer such that 2kF ≤ F < 2kF +1. We will see in Paragraph 3.2 that
it is possible to develop an attack on the initial key which needs 4kF trials.

If F is a power of 2, the output is a 2-adic sequence and is not resistant to
2-adic attacks. Moreover, if F is known, and its binary expansion contains few
1, the first equations of the algebraic attack are simpler, even if it is not possible
to develop such an attack (cf. Paragraph 3.2).

A first natural solution would be to choose F = 2128−1, that is to xor all the
cells of the main register. In this case, suppose that the output is S = (s(t))t∈N.
It is easy to check that the sequence S′ = (s(t) + s(t + 1))t∈N is the same that
the one that would be obtained by xoring all the carry cells. Even if we do not
know how to use this fact to develop a cryptanalysis, we prefer to use another
filter for this reason.

In our application, we propose to choose F = d = (|q|+1)/2. With this filter,
the output is the XOR of all cells of the main register which are just at the right
of a carry cell. For the prime q proposed above in (1) the value of kF is 128 and
the Hamming weight of the filter is 69.

We propose a very simple initialization of the F-FCSR-SF1 generator: we
choose a key K with 128 bits. The key K is used directly to initialize the main
register M . The carry register is initialized at 0.
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Statistical Properties of the Filtered Output. When two or more se-
quences are xored, the resulting sequence has good statistical properties as soon
as one of the sequences is good, under the restriction that this sequence is not
correlated with the other.

In our generator, each sequence is a 2-adic fraction with denominator q and
has good statistical properties. The only problem is the fact that these sequences
are not independent, since they are obtained by distinct shifts of the same pe-
riodic sequence. Note that the period of the sequence is very large (T ≥ 2127),
and that a priori the 69 distinct shifts looks like random shifts. So the output
sequence will have good statistical properties.

This hypothesis is comforted by the fact that our generator passes the NIST
statistical test suite, as we checked.

3.2 Cryptanalysis of F-FCSR-SF1

3.2.1 2-Adic Cryptanalysis of F-FCSR-SF1
2-adic complexity of the XOR of two or more 2-adic integers
A priori, the XOR is not related with 2-adic operations (i.e. operations with
carries), and then the sequence obtained by XORing two 2-adic fractions looks
like a random sequence from the point of view of 2-adic complexity. Experiments
support this assumption.

Moreover, due to the choice of q, in particular to the fact that (|q| − 1)/2 is
prime, the probability to have a high 2-adic complexity is greater than in the
general case.

Let q be a negative prime such that 2 is of order |q| − 1 modulo q. Consider
the xor (p1/q) ⊕ (p2/q) of the 2-adic expansions of two fractions with q as
denominator and 0 < p1, p2 < |q|. By Theorem 2, both summands are a sequence
of period |q| − 1 so the xor is also a sequence of period |q| − 1 (or dividing it).
Can this latter sequence written also as a fraction p/q? (with 0 ≤ p ≤ q and
possibly non reduced). Surely, the answer is yes in some cases (e.g. if p1 = p2).
But in very most cases, the answer is no. Here is an heuristic argument to show
this under the assumption that such an xor gives a random sequence of period
dividing |q| − 1. The number of such sequences is 2|q|−1 and the number of
sequences of the form (p1/q)⊕ (p2/q) is at most (|q| − 1)2/2. So we can expect
that the probability that the xor can be written p/q is about |q|2/2|q| which is
very small. This remark extends to the xor of O(ln |q|) summands.
A 2-adic attack

Theorem 2. Assume that the filter F is known by the attacker and let kF be an
integer such that F < 2kF +1 (that is all cells selected by the filter belong to the
rightmost kF + 1 cells of the main register). Then the attacker can discover the
key of the generator at a cost O(k22kF ).

We first state a lemma.

Lemma 1. Assume that the attacker knows the initial values mi(0) for 0 ≤ i <
kF (he also knows the initial values ci(0) for 0 ≤ i < kF which were assumed
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to be 0). Then he can compute the T first bits mkF
(t) (for 0 ≤ t < T ) of

the sequence MkF
by observing the sequence outputted by the generator, in time

O(TkF ).

Proof : The attacker observes first S(0) =
⊕kF

i=0 fimi(0). In this equality, the
only unknown value is mkF

(0) so the attacker can compute it in time O(kF ).
For subsequent bits the method generalizes as follows.

Assume that the attacker has computed bits mkF
(t) for 0 ≤ t < τ and knows

mi(t) and ci(t) for 0 ≤ t < τ and 0 ≤ i < kF . Observing the bit S(τ) he gets

S(τ) =
kF⊕
i=0

fimi(τ)

and the only unknown value here is mkF
(τ). So the attacker obtains it, also

in time O(kF ). He can also compute mi(τ + 1) and ci(τ + 1) for 0 ≤ i < kF ,
using the transition function. The time needed to compute these 2kF bits is
also O(kF ). We obtain the result by induction. �

The attack whose existence is asserted in Theorem 2 works following six steps.
• Choose an arbitrary new set of values for the bits mi(0) for 0 ≤ i < kF and

put ci(0) = 0 for 0 ≤ i < kF .
• Assuming that these bits correspond to the chosen values, compute the first

k bits of the sequence MkF
.

• Using the transition function, compute the first k+kF bits of the sequence M0

from the assumed values for the bits mi(0) with 0 ≤ i < kF and the k bits
obtained in the previous step.

• Multiply the integer
∑k−1

t=0 m0(t)2t by q modulo 2k to obtain a candidate p0

for the key.
• Run a simulation of the generator with the key p0. Stop it after generating

k + kF bits. Compare the last kF bits obtained to the ones computed in
Step 3. If they don’t agree, the candidate found is not the true key. Return
to first step until all possibilities are exhausted.

• After all possibilities in Step 1 are exhausted, use some more bits of the
generator to determine which key is the true key, if more than one good
candidate remains.

Now the proof of the theorem:

Proof : From Lemma 1, the cost of Step 2 is in O(kkF ) ≤ O(k2). Step 3
has also a cost of O(kkF ). The cost of Step 4 is O(k2) and those of Step 5 is
O(k(k + kF )) ≤ O(k2). The loop defined by Step 1 has to be iterated O(2kF )
times. Multiplying the number of iterations by the inner cost gives the cost of
the whole attack. �

With our parameters k = 128 and kF = 127, this attack is more expensive
than the exhaustive attack on the key.

Moreover, if the carries are not initialized to 0, there are 196 unknowns in
the system instead of 128.



92 F. Arnault and T.P. Berger

3.2.2 Linear Complexity of F-FCSR-SF1 Generator: XOR of Two
or More 2-Adic Integers

Arguments for the linear complexity are similar to those yet presented for the
2-adic complexity: since each 2-adic fraction looks like a random sequence from
the point of view of linear complexity, the XOR of these sequences have a high
linear complexity (cf. [17]). Experiments also support this assumption.

As for the 2-adic case, the particular value chosen for the period T helps for
the 2-adic complexity to be high. Let q be a negative prime such that 2 is of
order |q|−1 modulo q. Consider the xor (p1/q)⊕(p2/q) of the 2-adic expansion of
two fractions with q as denominator, and numerators such that 0 < p1, p2 < |q|.
Similar arguments as those above about the 2-adic behavior of this xor applies
to its linear behavior.

If this xor corresponds to the expansion of a series P (X)/Q(X) (written as a
fraction in reduced form), then the order of the polynomial Q must be a divisor
of T = |q| − 1. With the value of q proposed in (1), the order of Q must be 1,
2, T , or T/2. The only polynomials of order 1 or 2 are the powers of (X + 1).
Polynomials of order T or T/2 must have an irreducible factor Q1 of order T
or T/2. But this order must be a divisor of 2deg(Q1)−1, so deg(Q1) is a multiple
of the order of 2 modulo q. In the case of the above value of q, this order is T/2,
a number of bitsize 127. Hence polynomials Q with a divisor of such a degree
are not so frequent.

3.2.3 Algebraic Cryptanalysis of F-FCSR-SF1
The algebraic cryptanalysis of a pseudorandom generator is a tool developed
recently (cf.[5]).

The principle is simple: we consider the bits of the initial state m =
(m0, . . . , mk−1) = (m0(0) . . . , mk−1(0)) as the set of unknowns (suppose first
that the initial value of the carry register is 0) and, using the transition func-
tion, we compute the successive outputs of the generator as functions of these
unknowns fi(m0, . . . , mk−1). If the attacker knows the first output bits of the
generator, he gets a system of (non linear) equations in k variables. We can add
to this system the equations m2

i = mi as the unknowns are Booleans. If the
system obtained is not too complicated, it can be solved using for example the
Gröbner basis methods [6].

The transition function of an FCSR automaton is quadratic: the first equation
is linear on 128 variables (or 196 variables if the carries are not initialized to 0), the
second one is quadratic, the third is of degree 3, and so on.For example, the eleventh
equation is of degree 11 in 128 variables, its size is about 250 monomials and is not
computable. To solve the algebraic system, we need at least 128 equations.

Note that the fact we use a known filter does not increase the difficulty of
this attack. The filter is just a firewall against a 2-adic cryptanalysis.

3.2.4 The Time/Memory/Data Tradeoff Attack
There exists a recent attack on stream ciphers with inner states: the
time/memory/data tradeoff attack [3]. The cost of this attack is O(2n/2), where
n is the number of inner states of the stream cipher. This cost reflects not
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only the time needed for the attack, but also the use of memory and the
amount of data required. For the F-FCSR-SF1, the number of inner states is
n = k + � = 128 + 68 = 196. Even if this attack remains impracticable, it is
faster than the exhaustive one. This is why we recommend to use the dynamic
filter method.

3.3 Design of F-FCSR-SF8: A Static Filter and an 8-bit Output

In order to increase the speed of the generator, we propose to use several filters
to get several bits at each transition of the FCSR automaton. For example,
using 8 distinct filters, it is possible to obtain an 8-bit output at each transition.
However, the design of several filters may be difficult.

A first Cryptanalysis on Multiple Filters. Suppose that we use 8 filters F1,
. . . , F8 on the same state of main register M . Obviously, each of these filters must
be resistant to the 2-adic attack. These 8 filters must be linearly independent to
avoid a linear dependency on the 8 outputs. Moreover, by linear combinations of
the 8 filters, it is possible to obtain 28 filters, each of them must also be resistant
to the 2-adic attack.

Let C be the binary linear code generated by F1, . . . , F8.

• The condition on the independence of the 8 filters is the fact that the di-
mension of C is exactly 8.

• For F ∈ C, let kF be the least integer such that 2kF > F (here F is viewed
as an integer). The minimum over C of the values of kF must be as larger
as possible. Note that minF∈C,F �=0{kF } ≤ k − 8 = 120. If we choose C such
that minF∈C,F �=0{kF } = 120, the cost of the 2-adic attack is O(120× 2120)
which is approximatively the cost of the exhaustive attack.
Note that it is easy to construct a code C satisfying this condition.

• We recommend to avoid the use of a code C with a small minimum distance
d. Indeed, from a codeword of weight d, it is possible to construct a filter on
d cells of the main register M . Even if we do not know how to design such
an attack for d ≥ 2, we suggest to choose C satisfying d ≥ 6.

A Simple Way to Construct 8 Simultaneous Filters. In order to con-
struct good filters with a very efficient method to extract the 8-bit output, we
recommend the following method:

The filters are chosen with supports included in distinct sets. More precisely,
for i = 0 to 7, Supp(Fi) ⊂ {j | j ≡ i (mod 8)}.

This construction ensures dim(C) = 8, minF∈C,F �=0{kF } = mini{kFi
} and

d = mini(w(Fi)), where w(F ) is the Hamming weight of F . Moreover the ex-
traction procedure becomes very simple:
First, set F =

⊕7
i=0 Fi. The extraction of the 8-bit output from the content of

the main register M and the filter F can be done using the following algorithm:
S := M ⊗ F
for i := 6 to 3 do

S := S ⊕ shift+2i(S)
Output: S ⊗ 255 (the 8 lower weight bits of S)
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This needs 4 shifts, 4 Xor and 2 And on 128-bit integers. This extraction is
faster than the extraction of a single bit.

Note that conversely, from a 128-bit filter F , we obtain a family of 8-bit filters.
As an example, for the value F = d proposed for the F-FCSR-SF1 generator,
we obtain a code C with dim(C) = 8, minkF = 113 and d = 4. For this choice
of filter, it will be possible to design a 2-adic attack slightly more efficient than
the exhaustive one.

A Possible Attack. Let S(t) = (S0(t), . . . , S7(t)) be the 8-bit output at time
t. Some entries selected by the filter on which depend S0(t + 7), S1(t + 6),. . . ,
S7(t) may be related. And the relations involved might be partially explicited
when the state of the automaton is partially known.

So, even if we do not know how to design such an attack, we do not advice
to use the 8-bit output generator with a static filter. The dynamic filter method
presented in the next section will resist to such attack and will be preferred. We
also propose to use an IV mode with the F-FCSR designs in order to have a high
confidence on the security against be sure to resist to the different attacks.

4 Design of F-FCSR-DF1 and F-FCSR-DF8: Dynamic
Filtered FCSR Stream Ciphers

Due to the fact that the filter is very simple and its quality is easy to check, it
is possible to use a dynamic filter: the filter can be constructed as a function of
the key K, and then, is not known by the attacker. As soon as the filter is not
trivial (F �= 0 and F �= 2i), it is not possible to use the algebraic attack, nor the
attack exploiting the small binary size of F .

The construction of this dynamic filtered FCSR generator (DF-FCSR gener-
ator) is very simple: let g be a bijective map of GF (2)128 onto itself. For a 128-bit
key K, we construct the filter F = g(K) and also we use the key to initialize
the main register. The carry register is initialized at 0, since the attacker cannot
find the equations for the algebraic attack.

The main interest of the use of a dynamic filter is the fact that the number
n of inner state is increased of the size of the filter, i.e. n = 2k� = 324. The
cost of the time/memory/data tradeoffs attack becomes higher than those of
the exhaustive one.

4.1 Design of F-FCSR-DF1

This stream cipher is identical to F-FCSR-SF1 except the fact that the filter is
dynamic.

We propose to use for g the Rijndael S-box (cf. [14, 15]). This S-box operates
on bytes, and using it for each 16 bytes of a 128-bit key, we get a suitable
function g.

It is suitable to add a quality test for the filter, for example by testing the
binary size kF of F and its Hamming weight w(F ). For example, if kF < 100 or
w(F ) < 40, then we iterate g to obtain another filter with good quality.
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The computation of this dynamic filter is very simple. The main advantages
are to thwart completely the 2-adic attack (§3.2), the algebraic attack (§3.2) and
to avoid the time/memory/data tradeoff attack.

However, until now, we do not find any attack faster than the exhaustive
search against the static filter generator.

4.2 Design of F-FCSR-DF8

For the 8-bit output version, the use of a dynamic filter has also other justifica-
tion: it avoids all possible attacks on the filter described in Paragraph 3.3.

For a practical use we recommend the following key loading procedure:
• Construction of the filter F from the 128-bit secret key K by applying the
Rijndael S-box.
• Test the quality of the 8 subfilters extracted from F . Each of them must have
an Hamming weight at least 6, and a binary size at least 100.
• Go to the first step until the test succeed.
• Use the key K to initialize the main register M . The carry register is initialized
to 0.

The filter procedure is those of F-FCSR-SF8 (§3.3).

4.3 An Initial Vector Mode for F-FCSR Stream Ciphers

The IV Mode. There are several possibilities to add some initial vector IV to
our generators. A first one will be to use it as filter F , where the main register
is initialized with the key K and the carry register is initialized to 0.

In that case, we are in the situation of multiple known filters on the same
initialization of the automaton. This method will be dangerous.

In fact, the good solution is to use always the same filter from a fixed key K
with a static filter for 1 bit output and dynamic filter for 8-bit output. The IV
is used to initialize the carry registers.

With our automaton, there are 68 bits in the carry register. It is easy to use
them for IV of size 64. In order to avoid some problems related to the use of
the same key K for the main register, we recommend to wait 6 cycles of the
automaton before using an input after a change of IV . After these 6 cycles,
every cell of the main register contains a value depending not only of K but also
of IV .

We recommend to use the following protocol either with the F-FCSR-DF1
stream cipher, or with the F-FCSR-DF8 stream cipher:

Pseudocode:

1. F := g(K) (dynamic construction of the filter).
2. M := K; M := K.
3. Clock 6 times the FCSR and discard the output.
4. Clock and filter the FCSR until the next change of IV .
5. If change of IV , return to step 2.
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A Variant of Our Generator with a Key of Size 96 and Initial Vector
of Size 64. For some purposes where the security is important only during a
limited amount of time, it can be useful to define a variant with a smaller key-
size (but with same IV-size). For that we propose to use the retroaction prime

q = −145992282562012510535118773123 = −0x1D7B9FC57FE19AFEFEF7C5B83

This prime has been selected according the following criteria. Its bit size is 97,
so that d has bitsize 96. Also (|q| − 1)/2 is prime. The order of 2 modulo |q| − 1
is exactly |q| − 1. And d = 0xEBDCFE2BFF0CD7F7F7BE2DC2 has weight 65
so that there are 64 useful cells in the carries register.

Conclusion

We proposed a very fast pseudorandom generator, easy to implement especially
in hardware (but also in software). It has good statistical properties and it is
resistant to all known attacks. Its design can be compared to older generators
(such as the summation generator [16]) for whose the heart has a linear structure,
and is broken by a 2-adic device. Instead, our generator has a heart with a 2-adic
structure which is destroyed by a linear filter. It might be of similar interest of
these older generators (the summation generator is one of the best generator
known) while being even easier to implement due to the simplicity of the filter.

Acknowledgments. Both authors would like to thank Anne Canteaut and
Marine Minier for helpful comments and suggestions.
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Abstract. Algebraic attack has recently become an important tool in
cryptanalysing different stream and block cipher systems. A Boolean
function, when used in some cryptosystem, should be designed properly
to resist this kind of attack. The cryptographic property of a Boolean
function, that resists algebraic attack, is known as Algebraic Immunity
(AI). So far, the attempt in designing Boolean functions with required
algebraic immunity was only ad-hoc, i.e., the functions were designed
keeping in mind the other cryptographic criteria, and then it has been
checked whether it can provide good algebraic immunity too. For the
first time, in this paper, we present a construction method to generate
Boolean functions on n variables with highest possible algebraic immu-
nity �n

2
	. Such a function can be used in conjunction with (using direct

sum) functions having other cryptographic properties.
In a different direction we identify that functions, having low degree

subfunctions, are weak in terms of algebraic immunity and analyse some
existing constructions from this viewpoint.

Keywords: Algebraic Attacks, Algebraic Immunity, Annihilators, Boolean
Functions, Correlation Immunity, Nonlinearity.

1 Introduction

Recent literature shows that algebraic attack has gained a lot of attention in
cryptanalysing stream and block cipher systems. The attack uses overdefined
systems of multivariate equations to recover the secret key [1, 2, 10, 11, 12, 13, 14,
18, 17]. Given a Boolean function f on n-variables, different kinds of scenarios
related to low degree multiples of f have been studied in [13, 18]. The core of the
analysis is to find out minimum (or low) degree annihilators of f and 1 + f , i.e.,
to find out minimum (or low) degree functions g1, g2 such that f ∗ g1 = 0 and
(1 + f) ∗ g2 = 0. To mount the algebraic attack, one needs only the low degree
linearly independent annihilators [13, 18] of f, 1 + f .

So far very little attempt has been made to provide construction of Boolean
functions that can resist algebraic attacks. In [15], some existing construction
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methods have been analysed that can provide Boolean functions with some
other cryptographic properties to see how good they are in terms of algebraic
immunity.

Algebraic immunity of certain constructions have also been studied in [3, 4, 5].
In [5], the authors have proved that the algebraic immunity of the n-variable
functions constructed by Tarannikov’s method [21, 19] attain Ω(

√
n) algebraic

immunity. This presents a sharper result than what presented in [15] in terms of
analysing Tarannikov’s construction [21, 19]. Construction of cryptographically
significant Boolean functions with improved algebraic immunity has also been
presented in [7].

However, so far there is no existing construction method that can achieve
maximum possible algebraic immunity. In this paper, for the first time, we pro-
vide a construction method where the algebraic immunity is the main concern.
We show that given a Boolean function on n − 2d variables having algebraic
immunity 1, we can always construct a Boolean function on n variables with
algebraic immunity at least d + 1. The construction is iterative in nature (a
function with two more variables is constructed in each step) and we need to
apply it d times to get an n-variable function from an (n − 2d)-variable initial
function. We also show that the construction preserves the order of resiliency and
increases the nonlinearity by more than 22d times in d-steps (as it can be seen
as a direct sum of a function with good nonlinearity and resiliency with another
function with good algebraic immunity). Also using our construction one can
generate n-variable functions with highest possible algebraic immunity 
n

2 � and
good nonlinearity. For this one needs to start with 1 or 2-variable nonconstant
functions.

Further, in a different direction, we show that if a Boolean function has low
degree subfunctions then it is not good in terms of algebraic immunity. This
result generalizes the analysis on Maiorana-McFarland type functions presented
in [18]. Further our analysis answers some of the questions presented in [15]
regarding the algebraic immunity of the functions presented in [20].

2 Preliminaries

A Boolean function on n variables may be viewed as a mapping from {0, 1}n

into {0, 1} and define Bn as the set of all n-variable Boolean functions. One of
the standard representation of a Boolean function f(x1, . . . , xn) is by the output
column of its truth table, i.e., a binary string of length 2n,

f = [f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)].

The set of x ∈ {0, 1}n for which f(x) = 1 (respectively f(x) = 0) is called
the onset (respectively offset), denoted by 1f (respectively 0f ). We say that a
Boolean function f is balanced if the truth table contains an equal number of
1’s and 0’s.

The Hamming weight of a binary string S is the number of ones in the string.
This number is denoted by wt(S). The Hamming distance between two strings,
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S1 and S2 is denoted by d(S1, S2) and is the number of places where S1 and S2

differ. Note that d(S1, S2) = wt(S1 +S2) (by abuse of notation, we also use + to
denote the GF (2) addition, i.e., the XOR). By S1||S2 we mean the concatenation
of two strings. By S we mean the complement of the string S.

Any Boolean function has a unique representation as a multivariate polyno-
mial over GF (2), called the algebraic normal form (ANF),

f(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + . . . + a1,2,...,nx1x2 . . . xn,

where the coefficients a0, ai,j , . . . , a1,2,...,n ∈ {0, 1}. The algebraic degree, deg(f),
is the number of variables in the highest order term with non zero coefficient. A
Boolean function is affine if there exists no term of degree > 1 in the ANF and
the set of all affine functions is denoted An. An affine function with constant
term equal to zero is called a linear function.

It is known that a Boolean function should be of high algebraic degree to
be cryptographically secure [16]. Further, it has been identified recently, that it
should not have a low degree multiple [13]. The algebraic attack (see [13, 18] and
the references in these papers) is getting a lot of attention recently. To resist
algebraic attacks, the Boolean functions used in the cryptosystems should be
chosen properly. It is shown [13] that given any n-variable Boolean function f ,
it is always possible to get a Boolean function g with degree at most 
n

2 � such
that f ∗ g is of degree at most 
n

2 �. Here the functions are considered to be
multivariate polynomials over GF (2) and f ∗ g is the polynomial multiplication
over GF (2). Thus while choosing an f , the cryptosystem designer should be
careful that it should not happen that degree of f ∗ g falls much below 
n

2 �.
Towards defining algebraic immunity [13, 18, 15], one needs to consider the

multiples of both f and 1 + f .

1. Take f, g, h ∈ Bn. Assume that there exists a nonzero function g of low
degree such that f ∗g = h or (1+f)∗g = h, where h is a nonzero function of
low degree and without loss of generality, deg(g) ≤ deg(h). Among all such
h’s we denote the lowest degree h (may be more than one and then we take
any one of them) by ldgmn(f).

2. Assume there exists a nonzero function g of low degree such that f ∗ g = 0
or (1 + f) ∗ g = 0. Among all such g’s we denote the lowest degree g (may
be more than one and then we take any one of them) by ldgan(f).

It can be checked that [18, 15] for f ∈ Bn, deg(ldgmn(f)) = deg(ldgan(f)) and
in this line the following definition of algebraic immunity has been presented
in [15].

Definition 1. The algebraic immunity of an n-variable Boolean function f is
denoted by AIn(f) which is basically deg(ldgmn(f)) or deg(ldgan(f)).

Later we also need the following definition related to the annihilator set of a
function.
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Definition 2. Given f ∈ Bn, define AN(f) = {g ∈ Bn|g nonzero, f ∗ g = 0}.

The nonlinearity of an n-variable function f is the minimum distance from
the set of all n-variable affine functions, i.e.,

nl(f) = min
g∈A(n)

(d(f, g)).

Boolean functions used in crypto systems must have high nonlinearity to prevent
linear attacks [16].

Many properties of Boolean functions can be described by the Walsh trans-
form. Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and
x · ω = x1ω1 + . . . + xnωn. Let f(x) be a Boolean function on n variables. Then
the Walsh transform of f(x) is an integer valued function over {0, 1}n which is
defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)+x·ω.

A Boolean function f is balanced iff Wf (0) = 0. The nonlinearity of f is
given by nl(f) = 2n−1 − 1

2 maxω∈{0,1}n |Wf (ω)|. Correlation immune functions
and resilient functions are two important classes of Boolean functions. A function
is m-resilient (respectively mth order correlation immune) iff its Walsh transform
satisfies

Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m (respectively 1 ≤ wt(ω) ≤ m).

The paper is organized as follows. In the next section we present the con-
struction and the following section discusses the analysis of algebraic immunity
of a function in terms of the degree of its subfunctions.

3 Construction to Get AI as Required

In this section we present a construction to get Boolean function of n+2 variables
with algebraic immunity d + 2 ≤ 
n+2

2 �. The construction is iterative in nature
and it starts from an initial function of n+2−2(d+1) = n−2d variables having
algebraic immunity 1 (the minimum possible value). In each step, 2 variables
are added and algebraic immunity gets increased by 1. Let us now formalize the
construction.

Construction 1 . Let f ∈ Bn such that f = E||F ||G||H where E,F,G,H ∈
Bn−2. Let n − 2d > 0 and d ≥ 0. Take an initial function fn−2d ∈ Bn−2d with
AIn−2d(fn−2d) = 1. Suppose after d-th step fn ∈ Bn has been constructed. The
next function fn+2 ∈ Bn+2 is constructed in following manner:

fn+2 = fn||fn||fn||f1
n, where fk = Ek−1||F k||Gk||Hk+1,

for any function fj,
f0

j = fj ,
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and for the initial function fn−2d,

fs
n−2d = fn−2d (and f

s

n−2d = fn−2d),

for s > 0.

To understand the recursion in the Construction 1, we present an example
up to some depths.

– f1
n = fn−2||f1

n−2||f1
n−2||(f1

n−2)
2 as

fn = fn−2||fn−2||fn−2||f1
n−2,

– (f1
n−2)

2 = f1
n−4||(f1

n−4)
2||(f1

n−4)
2||((f1

n−4)
2)3 as

f1
n−2 = fn−4||f1

n−4||f1
n−4||(f1

n−4)
2,

– ((f1
n−4)

2)3 = (f1
n−6)

2||((f1
n−6)

2)3||((f1
n−6)

2)3||(((f1
n−6)

2)3)4 as
(f1

n−4)
2 = f1

n−6||(f1
n−6)

2||(f1
n−6)

2||((f1
n−6)

2)3.

This goes on unless we reach at the level of the (n−2d)-variable initial function.
For m ≥ 2, denote ((f1)2···)m as f1,m. As example, ((f1

n−6)
2)3 = f1,3

n−6. Also, for
notational consistency, we take (f1)1 = f1 and f1,0 = f0 = f .

Take an initial function fl (the 2l length binary string which is the truth
table of the function) on l variables. Below we present the construction idea as
truth table concatenation.

Step 1:fl+2 = flflflf l

Step 2:fl+4 = fl+2fl+2fl+2flf lf lfl = flflflf lflflflf lflflflf lflf lf lfl

Step 3:fl+6 = fl+4fl+4fl+4fl+2flf lf lflflf lf lflf lflflf l

Step 4:fl+8 = fl+6fl+6fl+6fl+4fl+2flf lf lflflf lf lflf lflflf lfl+2flf lf lfl

flf lf lflf lflflf lflf lf lflf lflflf lf lflflf lflf lf lfl

Thus after the k-th step, the function fl+2k is the concatenation of 22k num-
bers of fl and fl = 1 + fl. That is, the subfunctions of fl+2k at 2k-depth are
only fl and fl. That is, fl+2k can be seen as direct sum of fl and a 2k-variable
function.

To prove the main theorem we first present the following results. In the
proofs we will use the fact that for any f ∈ Bn and any subset V ∈ {0, 1}n, the
restriction of any annihilator g of f to V is an annihilator of the restriction of
f to V . For technical reasons (see also Remark 1 after the proof of Lemma 2),
during our proofs we will encounter certain situations when degree of a function
is < 0. As such functions cannot exist, we will replace those functions by 0
(function).

Lemma 1. Consider that the function fn+2 ∈ Bn+2 has been generated by Con-
struction 1 after (d + 1) many steps, d ≥ 1, taking fn−2d as the initial function.
Take g, h ∈ Bn−2. We assume that if g′ ∈ AN(fn−2d+2j), h′ ∈ AN(f1

n−2d+2j)
for 0 ≤ j ≤ d− 1 and deg(g′ + h′) ≤ j − 1, then g′ = h′ = 0. If

1. g ∈ AN(f1,i
n−2) and h ∈ AN(f1,i+1

n−2 ) for any i, i ≥ 1 and
2. deg(g + h) ≤ d− 2− i,

then g = h = 0.
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Proof. We prove it by induction. For the base step d = 1. Here deg(g + h) ≤
1 − 2 − i ≤ −2 implies such a function cannot exist (see also Remark 1), i.e.,
g + h is identically 0, which gives g = h.

Now g ∈ AN(f1,i
n−2d) and h ∈ AN(f1,i+1

n−2d ). Since fn−2d is the initial function,

by Construction 1, f1,i+1
n−2d = (f1,i

n−2d)
i+1 = f1,i

n−2d. Hence g ∈ AN(f1,i
n−2d) and

h ∈ AN(f1,i
n−2d). Thus g, h, being nonzero, cannot be same. So g = h = 0. This

proves the base step.
Now we prove the inductive step. Consider that the function fn ∈ Bn has

been generated by Construction 1 after d many steps, d ≥ 1, taking fn−2d as the
initial function. For any g′, h′ ∈ Bn−4 with g′ ∈ AN(f1,i

n−4) and h′ ∈ AN(f1,i+1
n−4 )

and for any i, i ≥ 1, if deg(g′ + h′) ≤ (d− 1)− 2− i, then g′ = h′ = 0.
Suppose that fn+2 is constructed by Construction 1 and there exists g ∈

AN(f1,i
n−2) and h ∈ AN(f1,i+1

n−2 ) with deg(g +h) ≤ d− 2− i. By construction, we
have

f1,i
n−2 = f1,i−1

n−4 ||f
1,i
n−4||f

1,i
n−4||f

1,i+1
n−4 ,

f1,i+1
n−2 = f1,i

n−4||f
1,i+1
n−4 ||f

1,i+1
n−4 ||f

1,i+2
n−4 .

Take,

g = v1||v2||v3||v4,

h = v5||v6||v7||v8,

This gives, v1 ∈ AN(f1,i−1
n−4 ), v2, v3, v5 ∈ AN(f1,i

n−4), v4, v6, v7 ∈ AN(f1,i+1
n−4 ) and

v8 ∈ AN(f1,i+2
n−4 ). Since deg(g + h) ≤ d− 2− i, from ANF of g + h = (v1 + v5) +

xn−3(v1 + v5 + v2 + v6) + xn−2(v1 + v5 + v3 + v7) + xn−3xn−2(v1 + · · ·+ v8) we
deduce the following.

– deg(v1 + v5) ≤ d − 2 − i = (d − 1) − 2 − (i − 1), implying that v1 = v5 =
0, for i ≥ 2. For i = 1, we have v1 ∈ AN(fn−4), v5 ∈ AN(f1

n−4) with
deg(v1 + v5) ≤ d − 3. Following the assumption in the statement of the
lemma, we get v1 = v5 = 0.

– deg(v2 + v6) ≤ d− 3− i = (d− 1)− 2− i, implying that v2 = v6 = 0.
– deg(v3 + v7) ≤ d− 3− i = (d− 1)− 2− i , implying that v3 = v7 = 0.
– deg(v4 + v8) ≤ d− 4− i = (d− 1)− 2− (i + 1), implying that v4 = v8 = 0.

Hence we get g = h = 0 for i ≥ 1. ��

Lemma 2. Consider that fn+2 ∈ Bn+2 has been generated using the Construc-
tion 1 after (d+1)-th step with initial function fn−2d. Let AI(fn−2d+2i) = i+1
for 0 ≤ i ≤ d. Consider that

1. gn+2 ∈ AN(fn+2),
2. deg(gn+2) ≤ d + 1, and
3. gn+2 is of the form gn+2 = gn+xn+2xn+1(gn+hn), where gn ∈ AN(fn), hn ∈

AN(f1
n).
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If deg(gn + hn) ≤ d− 1, then gn = hn = 0.

Proof. We will use induction on d. For the base step (i.e., d = 0) we have f1
n = fn

as fn the initial function when d = 0. Here gn and hn are annihilators of fn and
f1

n = fn respectively. Since deg(gn+2) ≤ 1, and gn+2 = gn +xn+2xn+1(gn +hn),
gn + hn = 0, which gives gn = hn. Since gn ∈ AN(fn) and hn ∈ AN(fn), being
non zero functions, they cannot be same, i.e., gn = hn = 0. Then gn+2 = 0.

Now we prove the inductive step. Assume the induction assumption holds
till d steps, d ≥ 0. Now we will prove the lemma statement at (d + 1)-th step.
That is fn+2 ∈ Bn+2 has been generated by Construction 1 after (d +1)-th step
with AI(fn+2) ≤ d + 1 and AI(fn−2d+2i) = i + 1 for 0 ≤ i ≤ d. Here gn+2 =
gn + xn+2xn+1(gn + hn) ∈ AN(fn+2) of degree ≤ d + 1, where gn ∈ AN(fn)
and hn ∈ AN(f1

n). Suppose deg(gn + hn) ≤ d− 1. Then here, we will prove that
gn = hn = 0. Here

fn = fn−2||fn−2||fn−2||f1
n−2,

f1
n = fn−2||f1

n−2||f1
n−2||(f1

n−2)
2.

Let

gn = A||B||C||D,

hn = E||F ||G||H, where

A,B,C,E ∈ AN(fn−2), D,F,G ∈ AN(f1
n−2) and H ∈ AN((f1

n−2)
2). Since

A,E ∈ AN(fn−2), we have A + E ∈ AN(fn−2) and hence deg(A + E) ≥ d or
A + E = 0. Since deg(gn + hn) ≤ d − 1, A + E = 0. Then deg(B + F ) ≤ d − 2
and deg(C +G) ≤ d−2. Thus, using the induction hypothesis we have B = C =
F = G = 0. So,

gn = A||0||0||D,

hn = E||0||0||H.

So, deg(D + H) ≤ d− 3 = d− 2− 1.
We have assumed the inductive steps upto d-th step. That gives that if

gn−2d+2i ∈ AN(fn−2d+2i), hn−2d+2i ∈ AN(f1
n−2d+2i) for 0 ≤ i ≤ d − 1 and

deg(gn−2d+2i + hn−2d+2i) ≤ i, then gn−2d+2i = hn−2d+2i = 0. Note that, this
satisfies the assumption considered in the statement of Lemma 1 and now we
can apply it.

Since D ∈ AN(f1
n−2) and H ∈ AN((f1

n−2)
2) with deg(D + H) ≤ d − 3,

following Lemma 1 we get D = H = 0. So we have gn = A||0||0||0, hn =
E||0||0||0, and hence

gn+2 = gn + xn+2xn+1(gn + hn)
= (1 + xn−1 + xn + xn−1xn)A

+xn+1xn+2((1 + xn−1 + xn + xn−1xn)(A + E)),

i.e., gn+2 = (1+xn−1+xn+xn−1xn)A, since A+E = 0. Then deg(gn+2) ≥ d+2,
since deg(A) ≥ d as A ∈ AN(fn−2). As deg(gn+2) ≤ d + 1, we have A = 0. This
gives the proof. ��
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Remark 1. In the proof of Lemma 2 above, if deg(D + H) ≤ d − 3 < 0, we
have (D + H) = 0, because here gn+2 = gn + xn+2xn+1xnxn−1(D + H) and
deg(gn+2) ≤ d + 1. Since there is no negative degree function, we have to take
the term xn+2xn+1xnxn−1(D + H) as 0.

Now we present the main result.

Theorem 1. Refer to Construction 1. Let the algebraic immunity of the initial
function fn−2d be 1. Then after (d + 1)-th step the algebraic immunity of the
constructed function fn+2 is d + 2.

Proof. We have to prove that any nonzero function gn+2 such that gn+2fn+2 = 0
has degree at least d+2. Suppose that such a function gn+2 with degree at most
d + 1 exists. Then, gn+2 can be decomposed as

gn+2 = gn||g′n||g′′n||hn,

where gn, g′n, g′′n ∈ AN(fn), and hn ∈ AN(f1
n). The algebraic normal form of

gn+2 is then

gn+2(x1, . . . , xn+2) = gn + xn+1(gn + g′n) + xn+2(gn + g′′n)
+xn+1xn+2(gn + g′n + g′′n + hn) .

If gn+2 has degree at most d + 1, then (gn + g′n) and (gn + g′′n) have degree at
most d. Because both functions lie in AN(fn) and AI(fn) = d + 1, we deduce
that gn + g′n = 0 and gn + g′′n = 0, which give, gn = g′n = g′′n. Therefore,
gn+2 = gn + xn+1xn+2(gn + hn). So, deg(gn + hn) ≤ d − 1. Now following the
Lemma 2 we have gn = hn = 0, that gives, gn+2 = 0.

Similarly one can check that there cannot be any nonzero annihilator of
1 + fn+2 having degree ≤ d + 1. This completes the proof. ��

Using this Construction 1, one can generate a function on n variables whose
algebraic immunity is the highest possible, i.e., 
n

2 �. In this case one has to start
from 1 or 2-variable nonconstant function. Then after each step we will get a
function on two more variables and the algebraic immunity will increase by 1.

Example 1. First we present the case for odd n. One can start from f1 = x1.
Step 1: f1 = 01
Step 2: f3 = f1f1f1f1 = 01010110
Step 3: f5 = f3f3f301101001 = 01010110010101100101011001101001
Step 4: f7 = f5f5f501010110011010010110100110010110
Step 5: f9 = f7f7f7f50101011001101001011010011001011001010110

01101001011010011001011001101001100101101001011001101001
Then we present the case for even n. One can start from nonlinear function

f2 = x1x2 as the initial function.
Step 1: f2 = 0001
Step 2: f4 = f2f2f2f2 = 0001000100011110
Step 3: f6 = f4f4f4f2111011100001
Step 4: f8 = f6f6f6f4f2111011100001f21110111000011110000100011110
Step 5: f10 = f8f8f8f6f4f2111011100001f21110111000011110000100011110

f4f2111011100001f21110111000011110000100011110f211101110
0001111000010001111011100001000111100001111011100001
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Note that the algebraic immunity stays the same if a function is subjected
to linear transformation on input variables. Thus, taking any function presented
in the above example, one can apply linear transformation to get number of
functions. Further the nonlinearity and algebraic degree also stays same after
linear transformation.

Now we will discuss some other cryptographic properties of the functions
generated using Construction 1 after k-th step.

Corollary 1. Let fd+2k ∈ Bd+2k is constructed by Construction 1 taking fd ∈
Bd as the initial function, i.e., fd+2k = fd + φ2k, the direct sum.

1. nl(fd+2k) = 2dnl(φ2k) + 22knl(fd)− 2nl(φ2k)nl(fd) > 4knl(fd).
2. Let fd be an r-resilient function. Then fd+2k is also r-resilient.
3. deg(fd+2k) = max{deg(fd),deg(φ2k)}.

Proof. The proof of item 1 follows from [20–Proposition 1(d)] and the proof of
item 2 follows from [20–Proposition 1(c)]. The result related to algebraic degree
is also easy to see. ��

In Item 1 of Corollary 1 we are using nl(φ2k). We have observed that nl(φ2k)
is equal to the number of 1’s in its truth table. We have checked that the val-
ues of nl(φ2k) are 1, 5, 22, 93, 386, 1586, 6476, 26333 for k = 1, . . . , 8. Us-
ing this, here we present the nonlinearity of the functions given in Example 1.
The initial function is the f1 = x1 which is a linear function. So, nl(f1) =
0. Therefore, nl(f3) = 2, nl(f5) = 10, nl(f7) = 44, nl(f9) = 186, nl(f11) =
772, nl(f13) = 3172, nl(f15) = 12952, nl(f17) = 52666. Similarly if one starts
with a 5-variable 1-resilient function with nonlinearity 12, one gets a 7-variable
1-resilient function with nonlinearity 56 (as nl(φ2) = 1), then a 9-variable 1-
resilient function with nonlinearity 232 (as nl(φ4) = 5) and so on. We like
to point out once again that the nonlinearity remains very good in this con-
struction and the order of resiliency is also not disturbed as it is a direct sum
construction of a function fd with good properties in terms of nonlinearity and
resiliency and a function φ2k which is good in terms of algebraic immunity.
When the weight (also nonlinearity) of the function φ2k is odd, then clearly
its algebraic degree is 2k. We have also checked upto k = 6, that when the
weight (also nonlinearity) is even then the algebraic degree is 2k − 1. The
exact nonlinearity and algebraic degree of φ2k is still open at this stage and
we are working on it. Certain ideas in this area have also been provided by
Carlet [9].

Note that if one starts with an initial function fn−2d ∈ Bn−2d having alge-
braic immunity D, it is not guaranteed that after d steps fn will have algebraic
immunity d + D; the only guarantee is that it will be ≥ d + 1 (following similar
arguement as in the proof of Theorem 1). It will be interesting to see what is
the exact algebraic immunity of fn.
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4 Functions with Low Degree Subfunctions

In this section we discuss why a Boolean function with low degree subfunction
is not good in terms of algebraic immunity. This result is a generalization of
the result presented in [18], where the authors have shown that certain kind of
Maiorana-McFarland constructions are not good in terms of algebraic immunity.

Proposition 1. Let f ∈ Bn. Let g ∈ Bn−r be a subfunction of f(x1, . . . , xn)
after fixing r many distinct inputs xi1 , . . . , xir

∈ {x1, . . . , xn}. If the algebraic
degree of g is d, then AIn(f) ≤ d + r.

Proof. Let xi1 , . . . , xir
are fixed at the values ai1 , . . . , air

∈ {0, 1}. Thus g is a
function on the variables {x1, . . . , xn} \ {xi1 , . . . , xir

}. It can be checked that
(1 + ai1 + xi1) . . . (1 + air

+ xir
)(1 + g) is an annihilator of f . The algebraic

degree of (1 + ai1 + xi1) . . . (1 + air
+ xir

)(1 + g) is d + r. Thus the result. ��

The Maiorana-McFarland construction can be seen as concatenation of affine
functions on n−r variables to construct an n-variable functions. Clearly we have
affine subfunctions of the constructed function in this case and hence deg(g) = 1
following the notation of Proposition 1. Thus there will be annihilators of degree
1 + r. Note that if r is small, then one can get annihilators at low degree [18–
Theorem 2, Example 1]. This situation for Maiorana-McFarland construction is
only a subcase of our proposition. Our result works on any function, it need not
be of Maiorana-McFarland type only. We present an example below.

Example 2. Let us consider a 20-variable function, with a subfunction of degree
2 on 17-variables, i.e., we fix 3 inputs. In that case the 20-variable function will
have an annihilator at degree 2 + 3 = 5.
Maiorana-McFarland type of constructions are used in design of resilient func-
tions. One idea in this direction is to concatenate k-variable affine functions
(repetition may be allowed) non degenerate on at least m + 1 variables to gen-
erate an m-resilient function f on n-variables. For such a function f , it is easy
to find an annihilator g of degree n − k + 1 as described in [18]. However, it
should be noted that in construction of resilient functions, there are lot of tech-
niques [20] that use concatenation of k-variable affine functions where k < n

2 .
In such a case, the annihilators described in [18–Theorem 2] will be of degree
greater than n

2 and will not be of practical use as there are other annihilators
of degree ≤ n

2 which are not of the form given in [18–Theorem 2]. We will show
that even in such a case, Proposition 1 can provide further insight. We will show
that a well known construction of resilient function [20–Theorem 10(b)] on n-
variables (n odd) can never achieve the algebraic immunity 
n

2 �. At the best, it
can only achieve the value �n

2 �. To explain this construction we briefly present
some notations from [20].

Take a bit b and a bit string s = s0 . . . sn−1. Then the string b AND s =
s′0 . . . s′n−1, where s′i = b AND si. Take two bit strings x = x0 . . . xn−1 and
y = y0 . . . ym−1. The Kronecker product x⊗ y = (x0 AND y) . . . (xn−1 AND y),
which is a string of length nm. The direct sum of two bit strings x, y is x$y =
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(x⊗yc)⊕(xc⊗y), where xc, yc are bitwise complement of x, y respectively. As an
example presented in [20], if f = 01, and g = 0110, then f$g = 01101001. Now
we present the construction for (2p + 1, 1, 2p− 1, 22p− 2p) function as presented
in [20] for p ≥ 4.

Construction 2 . [20–Theorem 10(b)] Let λ1, λ2, λ3, λ4 be the 3-variable linear
functions non degenerate on two variables (i.e., the functions x1 +x2, x2 +x3, x1 +
x3, x1+x2+x3) andμ1, μ2, μ3 be the 3-variable linear functions non degenerate on 1
variable (i.e., the functions x1, x2, x3). Let gi be the concatenation of the 3-variable
functionμi and its complementμc

i , for 1 ≤ i ≤ 3. That is gi’s are basically 4-variable
functions. Leth1, h2 be bent functions on 2p−4 variables, andh3, h4, h5 be bent func-
tions of 2p−6 variables and h6, h7 be two strings of lengths 22p−6 +1 and 22p−6−1
which are prepared by properly adding and removing 1 bit from the truth table of
(2p−6)-variable bent functions respectively. Let f be a concatenation of the follow-
ing sequence of functions. h1$λ1, h2$λ2, h3$g1, h4$g2, h5$g3, h6$λ3, h7$λ4. This is
a (2p + 1, 1, 2p− 1, 22p − 2p) function.

Proposition 2. The (2p+1)-variable function presented in Construction 2 has
a subfunction of degree at most p− 1 when x2p+1 = 0.

Proof. Consider the subfunction when x2p+1 = 0. The subfunction (call it g) in
concatenation form is h1$λ1, h2$λ2. Since h1, h2 are bent functions on 2p − 4
variables, they can have algebraic degree at most p − 2. Further λ1, λ2 are 3-
variable linear functions. The algebraic normal form of g is (1 + x2p)(h1 + λ1) +
x2p(h2 + λ2). So the degree of g is ≤ 1 + (p− 2) = p− 1. ��

Theorem 2. For a function f ∈ Bn (n odd) generated out of Construction 2,
AIn(f) ≤ �n

2 �.

Proof. Here n = 2p+1. We take g ∈ Bn−1, i.e., r = 1 according to Proposition 1.
Further from Proposition 2, deg(g) ≤ p− 1 = n−1

2 − 1. Thus, AIn(f) ≤ n−1
2 −

1 + 1 = �n
2 �. ��

Thus using our technique we can show that the construction proposed in [20–
Theorem 10(b)] can not achieve the maximum possible algebraic immunity 
n

2 �.
The maximum value it can achieve is ≤ �n

2 �. This can be seen only by Propo-
sition 1 which generalizes the result of [18–Theorem 2, Example 1]. This also
answers a question presented in [15–Example 2] for n = 9. There Construction 2
has been exploited for p = 4 and the functions constructed are as follows.

1. h1 = 0000010100110110, h2 = 0000010100110110, h3 = 0001, h4 = 0001,
h5 = 0001, h6 = 00010, h7 = 001. In this case, one gets a (9, 1, 7, 240) func-
tion f1 with AI9(f1) = 3.

2. If one changes h2 = 0000010100110110 by h2 = 0000010100111001, then we
get a (9, 1, 7, 240) function f2 with AI9(f2) = 4.

The question raised in [15] was why the algebraic immunity of these two
function are different? The reason is in the first case the functions h1, h2 are same
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with the ANF x1x3+x2x4. Thus the subfunction g (i.e., h1$λ1, h2$λ2) is a degree
2 function. So the maximum algebraic immunity, according to Proposition 1 can
be 2 + 1 = 3. That is the value achieved in [15]. In the second case, h1 is
different from h2 and the algebraic degree of g (i.e., h1$λ1, h2$λ2) becomes 3
and it achieves the value 3 + 1 = 4. Thus Proposition 1 helps in answering this
question. It is important to note that this technique can be employed to study the
upper bound of algebraic immunity for various constructions by analysing their
subfunctions and in particular, directly for the constructions proposed in [20, 6].

It should be noted that the converse of Proposition 1 is not always true. That
is, a function having low degree annihilator does not imply it always has some low
degree subfunction by fixing a few variables. As example, one may refer to the
5-variable function f = x1 +x2 +x2x4 +x3x4 +(x2 +x3 +x1x4 +x2x4 +x3x4)x5.
This function has algebraic immunity 2 and the only annihilator of degree 2 is
1+x1+x2+x1x4+x3x4+(x2+x3+x4)x5. If one verifies all possible subfunctions
of of f after fixing 1 and 2 variables, it is not possible to get subfunctions of
degree 1 and 0 respectively.

It will be interesting to extend our idea on the Boolean functions that can
be seen as concatenation of indicators of flats [8].

5 Conclusion

In this paper we study the algebraic immunity of Boolean functions since the
property becomes a necessary requirement in Boolean functions to be used as
cryptographic primitives. For the first time we present a construction where
one can get Boolean functions with maximum possible algebraic immunity. Also
the construction can be used in conjunction with Boolean functions with other
cryptographic properties to have functions which are suitable for different crypto-
graphic applications. Further we also point out that functions having low degree
subfunctions are not good in terms of algebraic immunity and study some well
known existing constructions from this approach.
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Abstract. Compact formulas are derived to represent the Algebraic
Normal Form (ANF) of f(x + a mod 2n) and f(x × a mod 2n) from
the ANF of f , where f is a Boolean function on F

n
2 and a is a constant

of F
n
2 . We compare the algebraic degree of the composed functions with

the algebraic degree of the original function f . As an application, the
formula for addition modulo 2n is applied in an algebraic attack on the
summation generator and the E0 encryption scheme in the Bluetooth
keystream generator.

1 Introduction

Addition and multiplication modulo 2n are operations which are very often used
in cryptosystems like e.g. in the block ciphers Safer [20] and Idea [22], in the key
stream generators natural sequence generator [12], summation generator [25] and
E0 encryption scheme of the Bluetooth keystream generator, and in the stream
ciphers Turing [24] and Helix [14].

Recently, algebraic attacks [5, 6] have been applied successfully to stream
ciphers and to some block ciphers. The central idea in the algebraic attacks is
to find low degree equations or approximations of the cipher and then to solve
an over-determined system of nonlinear multivariate equations of low degree by
efficient methods such as XL [5], simple linearization [7] or by Gröbner Bases
techniques [11].

By having compact formulas for representing the algebraic normal form of the
composition of a Boolean function f with addition and multiplication modulo 2n,
we can better understand the structure of the polynomial equations of the cipher
and also the consequences of mixing operations from different rings. Moreover,
we give a precise criteria to avoid that the degree of the composed functions
will not decrease with respect to the degree of f . As an example, we apply our
formulas in order to derive the algebraic relations used in an algebraic attack

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 112–125, 2005.
c© International Association for Cryptologic Research 2005
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on the summation generator and the E0 encryption scheme of the Bluetooth
keystream generator.

The paper is organised as follows. Some definitions and preliminaries that
will be used later in the paper are described in Sect. 2. In Sect. 3, we derive the
compact formulas for the algebraic normal forms of f(x+a mod 2n) and f(x×a
mod 2n) from the algebraic normal form of f , where f is a Boolean function on
F

n
2 and a, b are constants of F

n
2 . In Sect. 4, we compare the algebraic degree

of the composed functions with the algebraic degree of the original function f .
In Sect. 5, the formula for addition modulo 2n is applied in order to find the
algebraic equations for the summation generator and the E0 encryption scheme
of the Bluetooth keystream generator. Finally, we present some conclusions and
open problems in Sect. 6.

2 Definitions and Preliminaries

For the sake of clarity, we use “⊕ ” for the addition in characteristic 2 and “+”
for the addition modulo 2n or in R. The multiplication modulo 2n is represented
by “× ”.

Let F
n
2 be the set of all n-tuples of elements in the field F2 (Galois field with

two elements), endowed with the natural vector space structure over F2. The
correspondence between F

n
2 and Z2n is defined by

ψ : F
n
2 → Z2n : u = (u0, . . . , un−1) �→ u =

n−1∑
i=0

ui2i−1.

The partial ordening x $ a means that x precedes a or also xi ≤ ai for all
i ∈ {0, . . . , n− 1}.

Let f(x) be a Boolean function on F
n
2 . Any Boolean function f can be

uniquely expressed in the algebraic normal form (ANF). Namely,

f(x) =
⊕

u∈Z2n

huxu, hu ∈ F2,

where xu denotes xu0
0 · · ·xun−1

n−1 . The coefficients hu are defined by the Möbius
inversion principle, hu = h(u) =

∑
x
u f(x) for any u ∈ Z2n . The algebraic

degree of f , denoted by deg(f), is equal to to the number of variables in the
longest term xu0

0 · · ·xun−1
n−1 in the ANF of f , or simply as the maximum Hamming

weight of u (denoted as wt(u)) for which hu �= 0. The Hamming weight of a
binary vector is equal to the number of nonzero components.

A vectorial Boolean function F : F
n
2 → F

m
2 (also called (n,m) S-box or shortly

S-box) can be represented by the vector (f1, f2, . . . , fm), where fi are Boolean
functions from F

n
2 into F2 for 1 ≤ i ≤ m. The functions (fi)1≤i≤m are called the

component functions of the S-box.
The composition f ◦ F of a Boolean function f on F

m
2 with an (n,m) S-box

F leads to a Boolean function on F
n
2 . Here, we will study the composition of
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an arbitrary Boolean function on F
n
2 and addition respectively multiplication

modulo 2n with a fixed constant a ∈ F
n
2 . The addition modulo 2n, i.e., r = x+a

mod 2n is defined by

r0 + r1 · 2 + · · ·+ rn−1 · 2n−1 = (1)
(x0 + x1 · 2 + · · ·+ xn−1 · 2n−1) + (a0 + a1 · 2 + · · ·+ an−1 · 2n−1) mod 2n,

with components (r0, . . . , rn−1) recursively defined by

r0 = x0 ⊕ a0 ⊕ c0, c0 = 0,
ri = xi ⊕ ai ⊕ ci, ci = xi−1ai−1 ⊕ xi−1ci−1 ⊕ ai−1ci−1,

∀i ∈ {1, . . . , n− 1}.

The multiplication s = x× a mod 2n is defined by

s0 + s1 · 2 + · · ·+ sn−1 · 2n−1 = (2)
(x0 + x1 · 2 + · · ·+ xn−12n−1)× (a0 + a1 · 2 + · · ·+ an−12n−1) mod 2n,

with components (s0, . . . , sn−1) equal to

s0 = x0a0,

s1 = x1a0 ⊕ x0a1 ⊕ c1(x0, a0),
...

sn−1 = xn−1a0 ⊕ xn−2a1 ⊕ · · · ⊕ x0an−1 ⊕ cn−1(x0, . . . , xn−1, a0, . . . , an−1),

where ci() is a function of its arguments which defines the carry bit. The number
of terms of ci grows exponentially for increasing i. We write for instance ci for
i = 1, 2, 3 explicitely:

c1 = c1(x0, a0) = 0,
c2 = c2(x0, x1, a0, a1) = a0a1x0x1,

c3 = c3(x0, . . . , x2, a0, . . . , a2) = a0a1x0x1 ⊕ a0a1x1x2 ⊕ a0a1x0x1x2

⊕a0a2x0x2 ⊕ a1a2x0x1 ⊕ a0a1a2x0x1.

In this paper we will study the equations formed by the composition of addi-
tion or multiplication with a Boolean function. This corresponds with studying
the ANF of f(x + a) and f(x × a). For instance, if the Boolean function is
defined by the ANF xu = xu0

0 · · ·xun−1
n−1 , then the corresponding equation of

f(x+a) is equal to to ru0
0 · · · run−1

n−1 , where r0, . . . , rn−1 are functions in variables
(x0, . . . , xn−1) defined by (1).

3 Algebraic Normal Form of f(x + a) and f(x × a)

In this section, we deduce compact formulas for representing the ANF of the
functions f(x + a) and f(x× a) using the ANF of f .
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3.1 The ANF of f(x + a)

Theorem 1. If the ANF of f : F
n
2 → F2 : x �→ f(x) is given by the monomial

xu (u ∈ Z2n), then the ANF of f(x + a) with a ∈ F
n
2 a fixed constant is given by

f(x + a) =
u⊕

c=0

xu−cac, (3)

where u− c represents subtraction in R.

Proof. To prove the theorem, we need two lemmas which can be proven by
induction.

Lemma 1. For x, a0 ∈ F
n
2 , with a0 = (a0, 0, . . . , 0), we have that

(x + a0)u = xu ⊕ xu−1a0.

Proof. (Lemma 1)If n = 1, the lemma is trivial. Suppose the lemma is true
for dimension less or equal than n − 1. We will show that the lemma holds for
dimension n. If u < 2n−1, the lemma is true by induction, otherwise write u as
2n−1 + u1, where 0 < u1 < 2n−1, and thus

(x + a0)2
n−1+u1 = (x + a0)2

n−1
(x + a0)u1 .

On the second term of the product, we apply induction. For the first term, we
use the definition of addition (1) to compute (x+a0) = (x0⊕a0, x1⊕a0x0, x2⊕
a0x0x1, . . . , xn−1⊕a0x0 · · ·xn−2). Taking the 2n−1-th power is equal to selecting
the (n− 1)-th component in the binary representation. As a result we have

(x + a0)u = (x2n−1 ⊕ a0x
2n−1−1)(xu1 ⊕ xu1−1a0)

= x2n−1+u1 ⊕ x2n−1+u1−1a0,

where we used the fact that a0x
2n−1−1xu1 = a0x

2n−1−1xu1−1 = a0x
2n−1−1 in

the last reduction step. This equality is due to the fact that u1 $ 2n−1 − 1 and
u1 − 1 $ 2n−1 − 1. ��

Lemma 2. Denote x = x0 + 2× x′ with x0 = (x0, 0, . . . , 0) and
x′ = (x1, . . . , xn−1, 0). Similarly, denote a = a0 + 2× a′ with a0 = (a0, 0, . . . , 0)
and a′ = (a1, . . . , an−1, 0), then

(2× (x′ + a′))u =
{

0 if u is odd,⊕u
2
v=0(2× x′)u−2v(2× a′)2v if u is even.

Proof. (Lemma 2) We prove the lemma by induction on the number n of vari-
ables. Because multiplication by 2 only shifts the vector over one position, it
follows that

(2× x′)u =
{

0 if u is odd,
(x′)

u
2 if u is even. (4)



116 A. Braeken and I. Semaev

By induction on n, we have for even u that

(x′ + a′)
u
2 =

u
2⊕

v=0

x′u
2 −va′v.

If we rescale the previous formula using (4), we get the formula of the lemma. ��

By using the previous lemmas, we are now able to prove the theorem. We start
with applying Lemma 1 repeatedly.

(x + a)u = (x0 + 2× x′ + a0 + 2× a′)u

= (2× x′ + 2× a′ + x0)u ⊕ (2× x′ + 2× a′ + x0)u−1a0

= (2× x′ + 2× a′)u ⊕ (2× x′ + 2× a′)u−1x0

⊕ a0((2× x′ + 2× a′)u−1 ⊕ (2× x′ + 2× a′)u−2x0). (5)

Note that multiplication modulo 2n is distributive with respect to addition mod-
ulo 2n, i.e. (2 × x′ + 2 × a′) = 2 × (x′ + a′). As a consequence, we can apply
Lemma 2 on Equation (5). This implies that we need to distinguish the case u
is odd and the case u is even. We give here the proof for u odd. The proof for u
even is similar.

(x + a)u = x0(2× x′ + 2× a′)u−1 ⊕ a0(2× x′ + 2× a′)u−1

= x0

u−1
2⊕

v=0

(2× x′)u−2v−1(2× a′)2v ⊕ a0

u−1
2⊕

v=0

(2× x′)u−2v−1(2× a′)2v.

(6)

The following equalities hold

(2× x′)u−2v−1 = xu−2v−1,

x0(2× x′)u−2v−1 = xu−2v, (7)

because 2 × x′ = (0, x1, . . . , xn−1) and u − 2v − 1 is even. The same argument
holds for 2× a′ and thus

(2× a′)2v = a2v,

a0(2× a′)2v = a2v+1. (8)

After substituting the equalities (7) and (8) in Equation (6) and collecting the
terms, we find Formula (3). ��

Remark 1. If u = 2i, Formula (3) expresses the i-th component of the sum x+a.
Similarly, if u = 2i + 2j , Formula (3) expresses the product of the i-th and j-th
component of the sum x + a. Note that Formula (3) consists only of all terms
for which the integer sum of the exponents of x and a is exactly equal to u. The
formula can be easily generalized for the addition of n elements y1, . . . , yn of F

n
2
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by applying Formula (3) recursively. Again, the result is equal to the sum of all
terms with sum of exponents equal to u.

f(y1 + · · ·+ yn) =
⊕

k0,...,kn−1≥0
k0+···+kn−1=u

yk0
1 yk1

2 · · · ykn−1
n (9)

We now generalize Theorem 1 for Boolean functions where the ANF consists
of an arbitrary number of terms. By collecting the terms in a right way, we
obtain the following formula.

Corollary 1. If the ANF of f : F
n
2 → F2 is given by

⊕
u∈Z2n

huxu, hu ∈ F2, the
ANF of f(x + a) is given by

f(x + a) =
⊕

v

(
⊕
u≥v

huau−v)xv, (10)

where u− v represents the subtraction modulo 2n.

Example 1. Consider the ANF of the function f(x0, x1, x2) = x5⊕x1. The ANF
of f(x + a) is then determined by the previous corollary:

f(x + a) = (a1 ⊕ a5)⊕ x1(a0 ⊕ a4)⊕ x2a3 ⊕ x3a2 ⊕ x4a1 ⊕ x5,

which can also be written as

f(x + a) = (a0 ⊕ a0a2)⊕ x0(1⊕ a2)⊕ x1a0a1 ⊕ x0x1a1 ⊕ x2a0 ⊕ x0x2.

3.2 The ANF of f(x × a)

Theorem 2. If the ANF of f : F
n
2 → F2 : x �→ f(x) is given by the monomial

xu (u ∈ Z2n), then the ANF of f(x× a) with a ∈ F
n
2 a fixed constant is given by

f(x× a) =
⊕

ku=[k0,...,kn−1]

ark

xsk

, (11)

where ku = [k0, . . . , kn−1] satisfies

k0 ≥ 0, . . . , kn−1 ≥ 0;
k0 + 2k1 + · · ·+ 2n−1kn−1 = u. (12)

The integers rk = rk
0 +2rk

1 + · · ·+rk
n−1 and sk = sk

0 +2sk
1 + · · ·+sk

n−1 are defined
by the following (n + 1)× (n + 1)-table:

sk
n−1 k0,n−1 0 · · · 0

sk
n−2 k0,n−2 k1,n−2 · · · 0

. . .
sk
0 k0,0 k1,0 · · · kn−1,0

rk
0 rk

1 · · · rk
n−1
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For each ku = [k0, . . . , kn−1] that satisfies the properties as described by (12), we
fill the table with the binary representation of k0 = (k0,0, . . . , k0,n−1), . . . , kn−1 =
(kn−1,0, . . . , kn−1,n−1). The digit rk

i (resp. sk
i ) for all i ∈ {0, . . . , n−1} is equal to

to 1 if the corresponding column (resp. row) is different from the all-zero vector
and is equal to to 0 otherwise. The integer rk is then defined by the binary
representation (rk

0 , . . . , rk
n−1) and the integer sk by (sk

0 , . . . , sk
n−1).

Proof. Note that the multiplication a× x can be written as a sum:

a× x = a0 · x + a1 · (2× x) + · · ·+ an−1 · (2n−1 × x).

By formula (9) for the addition of n points, we obtain

f(x× a) =
⊕

k0,...,kn−1≥0
k0+···+kn−1=u

(a0x)k0(a1 · (2× x))k1 · · · (an−1 · (2n−1 × x))kn−1 .

As explained in the proof of Lemma 2, we have for the general case i, i ∈
{0, . . . , n− 1} that (2i × x)ki shifts the components of x over i positions, which
means that

(2i × x)ki =

{
x

ki
2i if ki ≡ o(2i)
0 otherwise.

Consequently, we can write the above equation for f(x× a) as:

f(x× a) =
⊕

k0,...,kn−1≥0

k1≡o(2),...,kn−1≡o(2n−1)
k0+···+kn−1=u

(a0x)k0(a1x)
k1
2 · · · (an−1x)

kn−1
2n−1 ,

where ki ≡ o(2i) means that 2i is a divisor of ki. This representation contains
mixed terms, i.e. terms which consists of powers of vector x and powers of
components of a. Moreover because x2

i = xi, we can very often reduce the
powers of x. However by translating this form in the representation given by
(11), we avoid these disadvantages. This can be seen by the definition of the
vectors rk and sk. The value rk

i (resp sk
i ) for all i ∈ {0, . . . , n − 1} is equal to

to 1 if the corresponding column (resp. row) is different from the all-zero vector
and is equal to to 0 otherwise. ��
Remark 2. We note that the formula of multiplication, unlike the formula of
addition, does not immediately give the full reduced form of the ANF because
some terms can cancel out. For instance (see also Example 2), if the pattern
1 0
1 1 appears in the represenation table of the exponents of a term, then also

the pattern
0 1
1 0 satisfies the same conditions of (12) and will give the same

exponents. Consequently both terms will cancel out. Another clear example is

the pattern
1 1
1 0 which is equivalent with the pattern

0 1
1 1 . However, the formula

is still much more practical than using explicitly the definition of multiplication.
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We now generalize Theorem 2 for Boolean functions where the ANF consist
of an arbitrary number of terms.

Corollary 2. If the ANF of f : F
n
2 → F2 is given by

⊕
u∈Z2n

huxu, hu ∈ F2, the
ANF of f(x× a) is given by

f(x× a) =
⊕

u∈Z2n

hu

⎛⎝ ⊕
ku=[k0,...,kn−1]

ark,uxsk,u

⎞⎠ ,

where ku, rk,u and sk,u for each u (corresponding with a non-zero hu in the ANF
of f) are defined as in Theorem 2.

Example 2. Consider the ANF of the function f(x0, x1, x2) = x5. To compute
the ANF of f(x × a), we first determine all k5 that satisfy the properties of
(12). There are 4 different possibilities for k = (k0, k1, k2), i.e. k = (5, 0, 0), k =
(3, 1, 0), k = (1, 2, 0), k = (1, 0, 1). For each k, we compute the corresponding
exponent of a and x by computing its corresponding table:

1 1 0 0
0 0 0 0
1 1 0 0

1 0 0

0 0 0 0
1 1 0 0
1 1 1 0

1 1 0

0 0 0 0
1 0 1 0
1 1 0 0

1 1 0

0 0 0 0
0 0 0 0
1 1 0 1

1 0 1

k = (5, 0, 0), k = (3, 1, 0), k = (1, 2, 0), k = (1, 0, 1)

As a consequence, we get the following ANF of f :

f(x× a) = a1x
5 ⊕ a3x

3 ⊕ a3x
3 ⊕ a5x

1.

= a1x
5 ⊕ a5x

1.

4 Comparison of the Degrees

In this section, we compare the degrees of f(x) at the one side with the degrees
of f(x + a) and f(x× a) at the other side.

4.1 Degrees of f(x) and f(x + a)

Theorem 3. If f(x) =
⊕

u∈Z2n
huxu, define um = max hu �=0

u∈Z2n

u. The degree of

the function fa : F
n
2 → F2 : x → f(x + a) will be for all values of a ∈ F

n
2 in the

interval

[wt(um), �log2 um�] if wt(um) ≤ �log2 um� or um �= 2�log2 um� − 1,
[wt(um),wt(um)] otherwise.
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Proof. From Corollary 1, we have that

f(x + a) =
⊕

v

⎛⎝⊕
u≥v

huau−v

⎞⎠xv

= xum ⊕
⊕

v<um

⎛⎝⊕
u≥v

huau−v

⎞⎠xv. (13)

From (13), the lowerbound for the degree of fa is equal to to wt(um), because
the term xum always appears and does not cancel out in the ANF of fa. The
degree of the function fa is exactly equal to wt(um) if the term

⊕
u≥v huau−v

from (13) is equal to to zero for all v with weight greater than wt(um).
The upperbound is equal to to the maximum weigth of v for which v < um.

This is equal to �log2 um� for u �= 2�log2 um�−1. The degree of fa is exactly equal
to �log2 um� if the term

⊕
u≥v huau−v from (13) is equal to to one for at least

one v with weight equal to �log2 um�. ��

Example 3. Consider the function f : F
7
2 → F2 : x �→ x64 ⊕ x62. The degree of

this function is 5, while um is equal to to 64 with weight one. We now show that
the degree of the function fa is between one and six according to Theorem 3 and
depending on the value a.

For odd a, i.e. a0 = 1, the term x63 appears in the ANF of fa, and thus the
corresponding functions have degree 6. If a0 = 0, a1 = 0, the function fa has
degree 5 because of the term x62 in the ANF of the function. For functions fa with
a0 = 0, a1 = 1, a2 = 0, the resulting degree is equal to to 4. If a0 = 0, a1 = 1, a2 =
1, a3 = 0 the degree of fa is 3, and if a0 = 0, a1 = 1, a2 = 1, a3 = 1, a4 = 0 the
degree of fa becomes 2. Finally for a = (0, 1, 1, 1, 1, 0, 1) and a = (0, 1, 1, 1, 1, 0, 0)
the function fa has degree 1.

In order to diminish the degeneration of the degree of the function f(x + a)
for a ∈ F

n
2 with respect to the degree of the function f(x), we need to take

care that |wt(um) − deg(f)| is small. The condition that a function satisfies
wt(um) = deg(f) will appear for instance if f is of degree d and contains the
monomial xn−d−1 · · ·xn−1.

4.2 Degrees of f(x) and f(x × a)

Theorem 4. If a0 �= 0 then the degree of f(x×a) will be greater or equal than the
weight of u0

m, where u0
m = max hu �=0

u∈Z2n

u. If a0 = 0 and a1 �= 0, then the degree of

f(x×a) will be greater or equal than the weight of u1
m, where u1

m = max hu �=0
u∈Z2n

u≡o(2)

u.

In general, if a0 = · · · ai−1 = 0 and ai �= 0, then the degree of f(x × a) will be
greater or equal than the weight of ui

m, where ui
m = max hu �=0

u∈Z2n

u≡o(2i)

u.
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Proof. We give the proof for the degree of f(x× a) and for the case a0 �= 0. All
other cases can be proven in the same way. In the following, we denote by g(x)

the function g(x) = (a0x)k0(a1x)
k1
2 · · · (an−1x)

kn−1
2n−1 . From Theorem 2, we can

write

f(x× a) =
⊕

u∈Z2n

hu

⊕
k0,...,kn−1≥0

k1≡o(2),...kn−1≡o(2n−1)
k0+···kn−1=u

g(x)

=
⊕

u∈Z2n

hu(a0x
u)⊕
⊕

u∈Z2n

hu

⊕
k0,...,kn−1≥0

k0 �=u,k1≡o(2),...kn−1≡o(2n−1)
k0+···kn−1=u

g(x)

= a0x
um0 ⊕

⊕
u∈Z2n

hu

⊕
k0,...,kn−1=0

k0 �=um0 ,k1≡o(2),...kn−1≡o(2n−1)
k0+···kn−1=u

g(x)

��

5 Algebraic Attacks

Algebraic attacks exploit the existence of low degree equations. Once a system
of nonlinear multivariate equations of low degree is obtained, it is solved by
efficient methods such as XL [5], simple linearization [7] or by Gröbner Bases
techniques [11]. We will derive in this section low degree equations for the sum-
mation generator and the E0 encryption scheme in the Bluetooth key stream
generator.

5.1 Algebraic Attack on the Summation Generator

Consider a summation generator, proposed by Rueppel [25], that consists of n
binary Linear Feedback Shift Registers (LFSR). The output bit of the j-th LFSR
at time t will be denoted by xt

j . The binary output bit zt is defined by

zt = xt
1 ⊕ · · · ⊕ xt

n ⊕ ct
0, (14)

where ct
0 is the 0-th bit of the carry ct = (ct

0, . . . , c
t
k−1) with k = 
log2 n�. The

carry for the next stage t + 1 is computed by

ct+1 =
⌊
(xt

1 + · · ·+ xt
n + ct)/2

⌋
. (15)

The summation generator is an (n, k)-combiner, which is a stream cipher that
combines n LFSRs and has k bits of memory. The summation generator produces
a key stream with linear complexity close to its period, which is equal to the
product of the periods of the n LFSRs. Moreover, the generator has maximum
algebraic degree and maximum order of correlation-immunity (cf Siegenthaler’s
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inequality t ≤ n−d−1 for combiners without memory). For this reason, summa-
tion generators are very interesting building blocks in stream ciphers. We here
describe the algebraic attack as presented in [17], but by using the formulas for
addition modulo 2n as given is Subsection 3.1, which makes the analysis and the
proofs from [17] much shorter.

To simplify notations, we denote by σt
i for 1 ≤ i ≤ n, the symmetric polyno-

mial that contains all terms of degree i in the variables xt
1, . . . , x

t
n, i.e.

σt
1 = ⊕n

i=1x
t
i,

σt
2 = ⊕n

1≤i1<i2≤nxt
i1x

t
i2 ,

...
σt

n = xt
1x

t
2 · · ·xt

n.

We now show how we can use Formula (3) in order to simplify the proof of the
main theorem in [17].

Theorem 5. For a summation generator of n = 2k LFSRs we can write an
algebraic equation connecting LFSR output bits and k+1 consecutive key stream
bits of degree upperbounded by 2k in the LFSR output bits.

Proof. By using formula (9), we immediately determine ct+1
0 , . . . , ct+1

k−1, which
are by defintion (15) the first until the (k − 1)-th components of the sum xt

1 +
· · ·+ xt

n + ct.

ct+1
0 = σt

2 ⊕ ct
0σ

t
1 ⊕ ct

1, (16)
ct+1
1 = σt

4 ⊕ ct
0σ

t
3 ⊕ ct

1σ
t
2 ⊕ ct

0c
t
1σ

t
1 ⊕ ct

2, (17)
ct+1
2 = σt

8 ⊕ ct
0σ

t
7 ⊕ ct

1σ
t
6 ⊕ ct

0c
t
1σ

t
5 ⊕ ct

2σ
t
4

⊕ct
0c

t
2σ

t
3 ⊕ ct

1c
t
2σ

t
2 ⊕ ct

0c
t
1c

t
2σ

t
1 ⊕ ct

3, (18)
...

ct+1
k−1 = σt

2k ⊕ ct
0σ

t
2k−1 ⊕ · · · ⊕ ct

0 · · · ct
k−1σ

t
1. (19)

As a consequence, ct+1
i for 0 ≤ i ≤ k − 1 can be expressed by an equation of

degree 2i+1 in the LFSR output bits xt
1, . . . , x

t
n because it contains the term

σt
2i+1 .

From(14),we derive an equation for ct
0 of degree one in the variables xt

1, . . . ,x
t
n,

ct
0 = σt

1 ⊕ zt. (20)

Substitution of the equations for ct
0 (20) and ct+1

0 ((20) shifted over one posi-
tion) in Equation (16), results in an equation for ct

1 of degree 2 in the variables
xt

1, . . . , x
t
n, xt+1

1 , . . . , xt+1
n , i.e.,

ct
1 = σt

2 ⊕ (zt ⊕ 1)σt
1 ⊕ σt+1

1 ⊕ zt+1. (21)

Substitution of the equations for ct
0 (20), ct

1 and ct+1
1 (21) in Equation (17),

results in an equation for ct
2 of degree 4 in the variables xt

1, . . . , x
t
n, xt+1

1 , . . . , xt+1
n ,
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xt+2
1 , . . . , xt+2

n . This process is repeated and in the last step we substitute the
equations for ct

0, . . . , c
t
k−1, c

t+1
k−1 in Equation (19) which results in an equation in

the LFSR output bits xt
1, . . . , x

t
n, . . . , xt+k

1 , . . . , xt+k
n . ��

We want to note that a similar approach for deriving the equations can also
be used on two versions of stream ciphers which are derived from the summation
generator: the improved summation generator with 2-bit memory [18] and the
parallel stream cipher for secure high-speed communications [19].

5.2 Algebraic Attack on Bluetooth Key Stream Generator

The E0 encryption system used in the Bluetooth specification [3] for wire-
less communication is derived from the summation generator and consists of 4
LFSRs. The variables zt, xt

i, σ
t
i have the same meaning as explained by the sum-

mation generator. Now the initial state consists of 4 memory bits, denoted by
(ct+1

0 , ct+1
1 , St+1

0 , St+1
1 ). In order to obtain the output and the initial state, the

following equations are derived:

zt = σt
1 ⊕ ct

0

ct+1
0 = St+1

0 ⊕ ct
0 ⊕ ct−1

0 ⊕ ct−1
1

ct+1
1 = St+1

1 ⊕ ct
1 ⊕ ct−1

0

(St+1
0 , St+1

1 ) =
⌊

xt
1 + xt

2 + xt
3 + xt

4 + ct
0 + 2ct

1

2

⌋
Using our formula for addition, we immediately find the algebraic equations for
St+1

0 , St+1
1 :

St+1
0 = σt

4 ⊕ σt
3c

t
0 ⊕ σt

2c
t
1 ⊕ σt

1c
t
0c

t
1

St+1
1 = σt

2 ⊕ σt
1c

t
0 ⊕ ct

1

In [1], these equations are justified by comparing the truth tables of both sides,
but no formal proof was given. The next step is to manipulate the equations in
such a way that an equation is obtained where all memory bits are eliminated.
These equations have degree 4 and are used in the algebraic attack.

6 Conclusions

We have computed compact formulas for representing the ANF of the compo-
sition of a Boolean function with addition modululo 2n, multiplication modulo
2n and a combination of both, from the ANF of the original function. We have
shown that comparing the degrees of the compositions and the original func-
tion is not possible in general. If the function satisfies the property that its
degree is equal to the weight of the highest coefficient modulo 2n in its ANF
representation, then the degree of the composition with addition modulo 2n and
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multiplication with odd constants modulo 2n will always be higher or equal than
the degree of the original function. Finally, we have used our formula of addition
modulo 2n for finding low degree equations of the summation generator and the
E0 encryption scheme in the Bluetooth key stream generator.

An open problem is to further simplify the formula for multiplication modulo
2n. Further research is required to investigate if those formulas could be used for
finding efficient low degree equations in other cryptosystems. For instance, an
application of our formulas on the T-functions of Shamir and Klimov [15] seems
to be possible for getting better insight in the algebraic equations.
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Abstract. Differential cryptanalysis and linear cryptanalysis are the
most widely used techniques for block ciphers cryptanalysis. Several at-
tacks combine these cryptanalytic techniques to obtain new attacks, e.g.,
differential-linear attacks, miss-in-the-middle attacks, and boomerang at-
tacks.

In this paper we present several new combinations: we combine dif-
ferentials with bilinear approximations, higher-order differentials with
linear approximations, and the boomerang attack with linear, with
differential-linear, with bilinear, and with differential-bilinear attacks.
We analyze these combinations and present examples of their usefulness.
For example, we present a 6-round differential-bilinear approximation of
s5DES with a bias of 1/8, and use it to attack 8-round s5DES using
only 384 chosen plaintexts. We also enlarge a weak key class of IDEA by
a factor of 512 using the higher-order differential-linear technique. We
expect that these attacks will be useful against larger classes of ciphers.

1 Introduction

In a differential attack [5], the attacker seeks a fixed input difference that prop-
agates through the nonlinear parts of the cipher to some fixed output difference
with usually high (or zero) probability. Such pair of differences with the corre-
sponding probability is called a differential. In the attack, the attacker asks for
the encryption of pairs of plaintexts with the input difference given by the dif-
ferential, and checks whether the output difference predicted by the differential
occurs (with the predicted probability).

In a linear attack [30], the attacker seeks a linear approximation between
the parity of a subset of the plaintext bits and the parity of a subset of the
ciphertext bits with a biased probability. The attacker asks for the encryption of
many plaintexts, and checks whether the linear relation predicted by the linear
approximation is satisfied or not.
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In 1994, Langford and Hellman [28] showed that both kinds of cryptanalysis
can be combined together by a technique called differential-linear cryptanalysis,
in which the differential is used to obtain a linear approximation (between two
encryptions) with bias 1/2. The technique was improved in [8, 27], allowing the
usage of differentials with probability lower than 1, thus making the technique
applicable to a larger set of block ciphers.

The differential-linear technique was applied to analyze several (reduced ver-
sions of) block ciphers, such as: DES [32] (attacked in [28, 8]), IDEA [26] (at-
tacked in [13, 20]), Serpent [1] (attacked in [9]), and COCONUT98 [35] (attacked
in [8]). Some of the attacks are the best known attacks against the respective
versions of the ciphers. It was also shown that the ciphertext-only extensions of
differential and linear cryptanalysis work with differential-linear cryptanalysis
as well [10].

Langford and Hellman’s technique is an example for devising the distinguisher
(to be used in the attack) as a combination of two much simpler parts. In this
case, a combination of a differential and a linear approximation. Such combina-
tions were later used in other cryptanalytic techniques, e.g., cryptanalysis using
impossible differentials [6, 7] (miss in the middle), and boomerang attacks [36],
both using combinations of differentials.

In this paper we present several new combinations of the differential, the
higher-order differential, the boomerang, the linear, and the bilinear techniques.
All of these combinations treat the distinguished part of the cipher as a cascade
of two (or even three) sub-ciphers.

First, we show how to combine the differential cryptanalysis with the bilinear
cryptanalysis [14]. Bilinear cryptanalysis is a generalization of linear cryptanal-
ysis specially designed for Feistel block ciphers. In bilinear cryptanalysis the
attacker studies relations between bilinear functions of the bits of the plaintext
and bilinear functions of the bits of the ciphertext. Usually, the results of bi-
linear cryptanalysis are comparable with those of ordinary linear cryptanalysis.
However, there are ciphers that are relatively strong against linear cryptanalysis
but are vulnerable to bilinear cryptanalysis. For example, s5DES [21] is stronger
than DES against linear cryptanalysis while the best 3-round bilinear approxi-
mation of s5DES has a bias of 1/4, which is much larger than the corresponding
linear approximation for DES.

We show that bilinear approximations can be combined with differentials
essentially in the same way as ordinary linear approximations are combined.
However, there are some differences between a regular differential-linear attack
and a differential-bilinear attack. We explore the similarities and the differences
between the two attacks, and apply the differential-bilinear technique to attack
8-round s5DES.

The next combination we discuss is the higher order differential-linear attack.
Higher-order differential cryptanalysis [2, 22, 25] is a generalization of differential
cryptanalysis that uses differentials of more than two plaintexts. In the higher-
order differential attack the attacker analyses the development of the XOR of
the intermediate data during the encryption of a set of plaintexts satisfying
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some conditions. Attacks which resemble higher-order differential attack, such
as SQUARE-like attacks [12, 18, 24, 29], can also be combined with linear crypt-
analysis.

We show that higher-order differentials (and SQUARE-like properties) can
also be used as a building block in a two-phase attack. In higher-order
differential-linear cryptanalysis, the attacker examines sets of plaintexts that
have the input difference of the higher-order differential. The higher-order dif-
ferential predicts the XOR value of all the intermediate encryption value after
the higher-order differential. Then, the linear approximation can be applied to
the entire set to predict the parity of a subset of the ciphertext bits (of all the
ciphertexts).

The data complexity of the higher-order differential-linear attack is propor-
tional to 22m/p2q2m, where p is the probability of the higher-order differential,
q is the bias of the linear approximation, and m is the number of plaintexts in
each set. Therefore, the attack can be used only if either the structure is small
enough or the linear approximation is very good (e.g., with bias 1/2). Such
instances can occur in block ciphers, especially in weak key classes for which
very strong and unexpected properties hold. For example, in the linear weak key
class of IDEA [17], a specially built approximation has a bias of 1/2. We show
that in the case of IDEA the size of the linear weak key class is increased from
223 keys in the class of a regular linear attack to 232 keys using a higher-order
differential-linear attack.

The last combination we discuss in this paper is the differential-linear
boomerang technique. The boomerang attack [36] treats the cipher as a cas-
cade of two sub-ciphers, and exploits two differentials, one for each sub-cipher,
in order to obtain some information on the differences using an adaptive chosen
plaintext and ciphertext process. In a differential-linear boomerang attack, the
attacker constructs a pair of encryptions whose difference in the intermediate
encryption value is known by means of the boomerang technique. This pair can
then be analyzed by means similar to those of the differential-linear cryptanal-
ysis. Moreover, it appears that the linear boomerang is a special case of a more
general attack. By decomposing the first sub-cipher into two sub-sub-ciphers
(and the cipher into three sub-ciphers in total), we can apply the differential-
linear (or the differential-bilinear) attack to the cipher.

One interesting feature of the (differential-)(bi)linear boomerang attack is
that this is the first attack that treats the cipher as a cascade of three sub-
ciphers successfully, while all previous works treat the cipher as a cascade of at
most two sub-ciphers.

The paper is organized as follows: In Section 2 we shortly sketch the ba-
sic differential-linear attack. In Section 3 we present differential-bilinear crypt-
analysis and apply it to DES and s5DES. In Section 4 we discuss higher-order
differential-linear cryptanalysis and present several applications of the attack,
including increasing the linear weak class of IDEA. In Section 5 we introduce
(differential-)(bi)linear boomerang attacks. This set of attacks are combinations
of the boomerang technique with the (differential-)(bi)linear attack. We concen-
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trate on the differential-bilinear boomerang attack, as this attack is the most
general one (while the other variants can be treated as special cases of this
attack). Finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Notations

We use notations based on [3, 5] for differential and linear cryptanalysis, respec-
tively. In our notations ΩP , ΩT are the input and the output differences of the
differential, and λP , λC are the input and the output subsets (denoted by bit
masks) of the linear approximation. We also use λT to denote the input subset
in some cases.

Let E = E1 ◦ E0 be a block cipher, i.e., C = Ek(P ) = E1k
(E0k

(P )). For
example, if E is DES, then E0 can be the first eight rounds of DES, while E1

are the last eight rounds. For sake of simplicity, we omit the key, as it is clear
that encryption is done using a secret key. We denote the partial encryption of
P (and the partial decryption of C) by T , i.e., T = E0(P ) = E−1

1 (C).
The last notation is the scalar product of two strings x and y and is denoted

by x · y.

2.2 Differential-Linear Cryptanalysis

Langford and Hellman [28] show that a concatenation of a differential and a
linear approximation is feasible. The main idea in the combination is to encrypt
pairs of plaintexts, and check whether the corresponding ciphertext pairs have
the same parity of the output mask or not.

Let ΩP → ΩT be a differential of E0 with probability 1. Let λT → λC be a
linear approximation of E1 with bias ±q. We start with a pair of plaintexts P1

and P2 = P1 ⊕ ΩP . After the partial encryption through E0, the intermediate
encryption values are T1 and T2 = T1 ⊕ ΩT , respectively. For any intermediate
encryption value T and its corresponding ciphertext C, λT · T = λC · C with
probability 1/2 + q. Therefore, each of the relations λC · C1 = λT · T1 and
λC ·C2 = λT ·T2 = λT ·T1⊕λT ·ΩT is satisfied with probability 1/2± q. Hence,
with probability 1/2 + 2q2 the relation λC · C1 = λC · C2 ⊕ λT ·ΩT holds.

We note that λT and ΩT are known, and thus, we have constructed a condi-
tion on C1 and C2 which has probability 1/2+2q2, while for a random pair of ci-
phertexts, this condition is satisfied with probability 1/2. This fact can be used in
distinguishers and in key recovery attacks. Hellman and Langford also noted that
it is possible to use truncated differentials [22] as long as λT ·ΩT is predictable.

As both difference and parity are linear operations, the two linear approxi-
mations in E1 in both encryptions can be combined into an approximation of E
of the form

E11–differential–E12 ,

where the lower subscript denotes whether the sub-cipher is in the first encryp-
tion or in the second, and “differential” refers to the differential combiner that
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ensures that the parities of the data before transition from E0 to E1 in both
encryptions are always equal (or always differ).

This led to the introduction of a differential-linear approximation for 6-round
DES which was composed of a 3-round differential and a 3-round linear approx-
imation. The differential-linear approximation was then used to attack 8-round
DES. The attack requires 768 chosen plaintexts, and has the lowest data require-
ments between all attacks on 8-round DES.

Later research [8, 27] showed that it is possible to have λT ·ΩT unknown but
fixed. Also, it was shown that when the differential-linear technique is applicable
when the differential has probability p �= 1. In that case the probability that
λT · T1 = λT · T2 ⊕ λT · ΩT is 1/2 + p′, where p′ = p/2, and thus the event
λC · C1 = λC · C2 ⊕ λT ·ΩT holds with probability 1/2 + 4p′q2 = 1/2 + 2pq2.

As we demonstrate later, in some of the attacks that we present this property
does not hold. That is, the attacker has to know the exact value of the difference
ΩT , and in some cases, only certain values of the difference ΩT can be used in
the combined attack.

Moreover, even if ΩT ·λP is unknown to the attacker but constant for a given
key, the attack still succeeds. In that case we know that the value λC ·C1⊕λC ·C2

is either 0 or 1, with a bias of 2q2. This case is similar to the case in linear
cryptanalysis, when λK ·K is unknown, and can be either 0 or 1.

3 Differential-Bilinear Attack

3.1 Bilinear Cryptanalysis

The bilinear attack [14] is a generalization of linear cryptanalysis aimed at Feistel
ciphers. The attack considers approximations involving bilinear terms of the
input, the output, and the key. The reason this attack aims at Feistel ciphers is
that it is easier to find such bilinear approximations for Feistel ciphers.

For the description of the bilinear approximations we adopt the notations
used in [14]. We also put aside the probabilistic nature of some of the steps for
sake of clarity (of course, when we use the approximations we take the prob-
abilities back into account). Let the input value of the r-th round in a Feistel
cipher be (Lr[0, 1, ..., n − 1], Rr[0, 1, ..., n − 1]), where L stands for the left half
of the data and R stands for the right half (note that R0 and L0 compose
the plaintext). Furthermore, we denote the input and the output values of the
F -function in the r-th round by Ir[0, 1, ..., n− 1], and Or[0, 1, ..., n− 1], respec-
tively. Due to the structure of a Feistel cipher Ir = Rr, Rr+1 = Lr ⊕ Or, and
Lr+1 = Rr.

Let α be a subset of {0, 1, ..., n − 1}, then Lr[α] = ⊕{Lr[s]|s ∈ α} =
⊕s∈αLr[s], i.e., Lr[α] is the parity of all bits in the left half masked by α. Simi-
larly Rr[β] is the parity all bits in the right half masked by β.

According to the Feistel round, for any mask α, β and any round r:

Lr+1[β] ·Rr+1[α]⊕Rr[β] · Lr[α] = Ir[β] ·Or[α].
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Such 1-round bilinear approximations can be concatenated to obtain bilinear
approximations of several rounds. Concatenation requires some additional con-
ditions, and also introduces some probability to the whole approximation. We
note that in some cases the relations involve key bits in bilinear terms as well,
e.g., Lr[12] ·Kr[15]. One-round approximations can also be extended such that
they include linear terms in addition to the bilinear ones. In this case, the con-
catenation is more complex and can be achieved only if the linear terms fulfill
some additional requirements. The full description of bilinear approximations is
given in [14]. The general form of the obtained bilinear approximation is

L0[α0] ·R0[β0]⊕R0[γ0]⊕ L0[δ0]⊕ Ln[αn] ·Rn[βn]⊕Rn[γn]⊕ Ln[δn] =
L0[ε0] ·K[ε1]⊕R0[ζ0] ·K[ζ1]⊕ Ln[η0] ·K[η1]⊕Rn[θ0] ·K[θ1]⊕K[ι1]

(1)

where K is the key (or more precisely, the list of subkeys), and all Greek letters
represent some mask.

Given the above approximation, the bilinear attack resembles the linear at-
tack. Many plaintext/ciphertext pairs are gathered, and for any guess of K[ε1],
K[ζ1], K[η1], K[θ1], and K[ι1], the attacker counts how many pairs satisfy the
approximation. The guess for which the above approximation holds with the
expected probability of 1/2 + q is assumed to be the right guess.

We note that in a bilinear approximation there might be bilinear expressions
involving the subkey. This fact has implications on the differential-bilinear attack
which we explore later.

3.2 Differential-Bilinear Cryptanalysis

Roughly speaking, the differential-bilinear attack encrypts many pairs of plain-
texts, and examines Whether the obtained pair of ciphertexts satisfy some bi-
linear approximation or not. This is very similar to the way that differential and
linear cryptanalysis are combined.

We shall assume, without loss of generality, that the bilinear approximation
has the form presented in Equation (1), and that the probability of the approx-
imation is 1/2 + q. We note that it is possible to have several bilinear terms in
the approximation, but this fact does not change our analysis. We denote the
differential to be concatenated by ΩP → ΩT , and assume that the differential
has probability p.

The attacker chooses pairs of plaintexts P1 and P2 = P1 ⊕ ΩP . With prob-
ability p the the intermediate encryption values T1 and T2, respectively, have a
difference that satisfies the equality

T1L[α0] ·T1R[β0]⊕T1L[γ0]⊕T1R[δ0] = T2L[α0] ·T2R[β0]⊕T1L[γ0]⊕T2R[δ0], (2)

where TiL is the left half of Ti, and similarly TiR is the right half of Ti. We note
that under the random distribution1 assumption, in the (1−p) of the cases where

1 We note that whether this assumption holds for a given cipher needs to be throughly
investigated, and if possible verified as done in [9].
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the differential does not hold, Equation (2) holds in half of the times. Thus, the
probability that Equation (2) holds is p + (1− p)/2 = 1/2 + p/2, and the bias is
p′ = p/2.

Then, similarly to the differential-linear case, the pair of ciphertexts C1 and
C2 satisfies the following equation

C1L[αn]·C1L[βn]⊕C1L[γn]⊕C1R[δn] = C2L[αn]·C2R[βn]⊕C2L[γn]⊕C2R[δn] (3)

with probability 1/2 + 4p′q2 = 1/2 + 2pq2.
However, unlike differential-linear cryptanalysis where any differential can be

used for the combined attack, in the bilinear case the situation is more compli-
cated. This is due to the fact that bilinear approximations require more knowl-
edge about the data than linear approximations. In some cases, the required
information is not given by the differential.

It appears that the knowledge of the difference LT1 [α0]⊕LT2 [α0] and RT1 [β0]⊕
RT2 [β0] in the two encryptions does not imply the knowledge of the difference
between the LT [α0] ·RT [β0] values. Thus, the attacker is restricted to the cases
where the knowledge suggested by the difference ΩT suffices to know the differ-
ence of the LT [α0] · RT [β0] values. This is clearly the case when α · ΩTL = β ·
ΩTR = 0, i.e., if the parity of the differences in the bits masked by α and β is zero.
Another example is when there are six active bits in the output of the differential
a, b, c, d, e and f , and the bilinear approximation is a·b+c·d+e·f+a·f+c·b+e·d.
For an arbitrary bilinear relation

∑
α,β LTi

[α] ·RTi
[β], where α and β are masks,

the difference between the two sums can be predicted (to be zero) whenever the
following two conditions hold simultaneously: (1) Each LTi

[α] appears an even
number of times in products with RTi

[β]’s whose difference is 1, and (2) Each
RTi

[β] appears an even number of times in products with LTi
[α]’s whose differ-

ence is 1.
We note that the linear terms of the approximation behave in the same way

as in differential-linear cryptanalysis. This is due to the way the attack works —
the attacker examines the difference in the output mask of two encryptions, and
as long as the linear terms do not affect the bias of the difference in the output
mask, the linear terms do not change the attack.

A more formal way to describe a differential-bilinear approximation is: As-
sume that the cipher E can be decomposed to two sub-ciphers E = E1 ◦ E0,
where the differential ΩP → ΩT (and probability p) is used in E0, and a bilinear
approximation is used for E1. Also assume that the bits predicted in ΩT are
sufficient to know the difference in the LT [α0] ·RT [β0] values with bias p/2. Let
b1 and b2 denote the outputs of the bilinear approximation in the first and the
second encryptions, respectively. The combination between the differential and
the bilinear approximation can be represented by the following extended bilinear
approximation:

b1–differential–b2,

where “differential” refers to the differential combiner. A distinguishing attack
or a key recovery attack based on the differential-bilinear property is similar to
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an ordinary differential-linear attack — the attacker encrypts many plaintext
pairs, and checks in how many of the pairs satisfy Equation (3).

The probability that a pair of ciphertexts (C1, C2), originating from a pair of
plaintexts (P1, P2 = P1⊕ΩT ), to satisfy Equation (3) is 1/2+4p′q2 = 1/2+2pq2.

An interesting fact that will be demonstrated in the bilinear approximation of
DES is that the subkey may be a part of the bilinear approximation. While in a
linear approximation the linear factors of the key are independent of the plaintext
(or the ciphertext), and can be treated like such, in a bilinear approximation the
key may have a bilinear term involving the plaintext (or the ciphertext). Thus,
Equation (3) might involve unknown key terms. When the equation involves
unknown key terms, the attacker has to try all possible combinations for these
key terms in the attack.

3.3 Applying Differential-Bilinear Cryptanalysis to DES and to s5

DES

In [14] a 3-round bilinear approximation of DES is presented. The approximation
has a bias of q = 1.66 · 2−3 which is slightly better than the best 3-round linear
approximation (that has a bias of 1.56 · 2−3). The bilinear approximation is as
follows:

L0[3, 8, 14, 25]⊕R0[17]⊕ L0[3] ·R0[16, 17, 20]⊕
L3[3, 8, 14, 25]⊕R3[17]⊕ L3[3] ·R3[16, 17, 20]
= K[sth]⊕ L0[3] ·K[sth′]⊕ L3[3] ·K[sth′′],

where (L0, R0) is the plaintext (or in our case the intermediate encryption value),
(L3, R3) is the ciphertext, and K[sth],K[sth′], and K[sth′′] are subsets of the
key bits.

We can concatenate the above bilinear approximation to a differential that
predicts a zero difference in L0[3] · R0[16, 17, 20]. The best 3-round differential
that satisfies the requirements for concatenating the differential and the bilinear
parts is presented in Figure 1. It has probability 46/64, and has the following
structure: The first round has a zero input difference. The second round has an
input difference with one active S-box — S3. The input difference of 4x to S3 may
cause an output difference whose bit 2 (of S3) is inactive with probability 28/64.
If this is the case, then the masked bits of the input of the bilinear approximation
are guaranteed to have a zero difference after the third round. Otherwise (with
probability 36/64), bit 2 of the output of S3 is active. This bit enters S4 in
the third round, and with probability 1/2 the output difference of S4 does not
affect the bits masked by the input mask of the bilinear approximation, and
thus, with probability 28/64 + 1/2 · 36/64 = 46/64 a pair with input difference
ΩP = (0x, 00 20 00 00x) has a zero difference in ΩT in the bits masked by the
bilinear approximation.

According to the previous analysis, the bias of the 6-round differential-bilinear
approximation that starts with the above input difference is

2pq2 = 2
46
64

(1.662−3)2 = 1.98 · 2−5.
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ΩP = 00 20 00 00 00 00 00 00x

A′ = 0 a′ = 0

B′ = 0X 00 NZ 0Yx b′ = 00 20 00 00x

= P (00 V 0 00 00x)

C′ =?? ?M R? ??x c′ = 0X 00 NZ 0Yx

= P (0? 0F ?? ??x)

ΩT =?? ?M R? ?? 0X 00 0Z 0Yx

F

F

F

(where X, Y ∈ {0, 4}, Z ∈ {0, 1}, M ∈ {0, 2, 4, . . . , Ex}, R ∈ {2, 4, 6}, F ∈
{0, 1, 2, 3, 8, 9, Ax, Bx}, N ∈ {0, 8}, V ∈ {3, 5, 6, 7, 9, Ax, Bx, Cx, Dx, Ex, Fx} and where
? is any arbitrary value.)

Fig. 1. A 3-Round Differential of DES with Probability 46/64

This bias is slightly lower than the bias of the best 6-round differential-linear
approximation (that equals to 2.43·2−5), and thus, the differential-bilinear attack
on 8-round DES requires more data than the corresponding differential-linear
attack.

An example that illustrates the advantages of the differential-bilinear crypt-
analysis over a regular differential-linear attack is s5DES [21]. In [15] the follow-
ing bilinear approximation with bias q = 1/4 is presented:

L0[17, 23, 31]⊕R0[1, 5]⊕ L0[9] ·R0[5]⊕
L3[17, 23, 31]⊕R3[1, 5]⊕ L3[9] ·R3[5] = K[sth],

where K[sth] is a subset of the key bits. This bilinear approximation can be
concatenated to the 3-round differential with probability 1 presented in Figure 2.
The differential assures that the difference in the input bits of the bilinear term
of the bilinear approximation is zero with probability 1. Thus, the bias of the
differential-bilinear approximation is:

2pq2 = 2(1/4)2 = 1/8
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ΩP = 20 00 00 00 00 00 00 00x

A′ = 0 a′ = 0

B′ = 00 W0 XY 0Zx b′ = 20 00 00 00x

= P (V 0 00 00 00x)

C′ =?? ?? M? ??x c′ = 00 W0 XY 0Zx

= P (0? ?? ?? 0?x)

ΩT =?? ?? M? ?? 00 W0 XY 0Zx

F

F

F

(where V ∈ {1, . . . , Fx}, W ∈ {0, 8}, X ∈ {0, 8}, Y ∈ {0, 2}, Z ∈ {0, 2}, M ∈
{0, . . . , 7}, and ? is any arbitrary value)

Fig. 2. A 3-Round Differential of s5DES with Probability 1

This differential-bilinear approximation can be used to attack 8-round s5DES
using 384 chosen plaintexts and time complexity of 220.2 encryptions. The attack
finds about 90 suggestions for 16 bits of the key, where the right value is among
the suggested values with probability of 65.5%.

4 Combining Higher-Order Differential and Linear
Attacks

4.1 Higher-Order Differential Cryptanalysis and SQUARE- ike
Attacks

Higher-order differential cryptanalysis [2, 22, 25] is a generalization of differential
cryptanalysis that exploits the algebraic structure of the cipher. In a higher-
order differential attack the attacker asks for the encryption of a structured set
of chosen plaintexts and analyses the XOR value (or some other function) of the
ciphertexts. The motivation of the attack is the fact that while it is well known
that linear relations between sets of bits during encryption should be avoided,
in some instances higher-order relations between sets of bits can be found.

L
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Ordinary differential cryptanalysis resembles an examination of the deriva-
tive of the nonlinear function of the cipher. It seeks cases with high enough
probability in which the nonlinear function can be approximated by a linear
function. Similarly, higher-order differential cryptanalysis looks at the higher-
order derivatives of the nonlinear function and seeks cases where the derivatives
can be predicted with high probability.

A close relative of the higher-order differential attack is the class of the
SQUARE-like attacks [12, 18, 24, 29]. These attacks are aimed against ciphers
in which small portions of the bits are interleaved by a strong nonlinear function
while the main interleaving stage is linear. This is the case in many of the SP
networks being in use today, and in particular in the AES. In this kind of attacks,
the attacker examines a set of plaintexts, chosen such that the input to one of the
non-linear part gets all the possible values. Thus, the attacker knows that the set
contain all the intermediate values (after the nonlinear stage), but she does not
know which value has originated from which plaintext. In this case, the attacker
does not look for the XOR of the ciphertexts, but rather for more complicated
functions, such as whether each of the possible values appears only once or not.
SP networks with only a few rounds are especially vulnerable, as very efficient
attacks can be devised, no matter what the non-linear function is [12].

Both higher-order differential cryptanalysis and SQUARE-like attacks, start
with a set of specially chosen plaintexts, and look for some special structure in
the obtained set of ciphertexts. The difference between the two attacks is the
form of the special structure we expect/look for in the ciphertexts set.

4.2 The Higher-Order Differential-Linear Attack

The combination of higher-order differentials with linear approximations is sim-
ilar to ordinary differential-linear cryptanalysis. The attacker uses the higher-
order differential (or the SQUARE property) to predict the XOR value of the
sets of masked bits in all of the elements of the structure, and then uses the linear
approximation to compare this value with the XOR of the masked ciphertext
bits in all of the encryptions.

Let Set be a set of plaintexts {P1, P2, . . . , Pm} such that the higher-order
differential predicts (with some probability p) the value ⊕m

i=1Ti where the Ti’s are
the intermediate encryption values. Under standard independence assumptions,
this means that the parity of any subset of bits taken over all intermediate
encryption values is biased with a bias of p′ = p/2. We also assume that there is
a linear approximation that predicts the value of λT ·T ⊕λC ·C with probability
1/2 + q.

Lemma 1. Let the event I be

I = {λP · (T1 ⊕ ...⊕ Tm) = λC · (C1 ⊕ ...⊕ Cm)} .

Then (under standard independence assumptions) Pr[I] = 1/2 + 2m−1qm.

Before the proof we note that I is actually the event that the XOR of the input
mask, taken over all intermediate encryption values, is equal to the XOR of the
output mask, taken over all ciphertexts.
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Proof. The proof of the lemma is by induction on m, and is very similar to
the proof of Matsui’s Piling-up Lemma [30]. If m = 1, there is only one ap-
proximation and thus the probability equals to 1/2 + q. Assume that the claim
holds for structures of size k and consider a structure of size k + 1. We divide
the structure into two structures, one consisting of k ciphertexts, and the other
consisting of one ciphertext. The division into two structures can be done at
random. Consider the probabilities of the events I in the two structures, i.e.,
consider each structure as an independent structure and consider the probabil-
ity of the events I corresponding to these new structures. Clearly, the event I
occurs for the whole structure if and only if the corresponding events I1, Ik occur
either for both structures or for none of them. By the induction hypothesis, the
probability of such an event equals to:

(1/2 + 2k−1qk)(1/2 + q) + (1/2− 2k−1qk)(1/2− q) =
1/4 + 2k−2qk + 2k−1qk+1 + q/2 + 1/4− 2k−2qk + 2k−1qk+1 − q/2 =1/2+2kqk+1

Thus, by induction, the lemma is proven. Q.E.D.

Lemma 2. Given a set of plaintexts with the input requirements of the higher-
order differential, the bias of the event that the XOR of the output mask in all
the ciphertexts equal to the value predicted by the linear approximation is

b̂ = 2m−1pqm. (4)

Proof. The proof is a combination of the result of the previous lemma with the
probability of the higher-order differential. Let Z1, Z2 be the boolean variables
defined as Z1 = λP · (T1 ⊕ ... ⊕ Tm), and Z2 = λC · (C1 ⊕ ... ⊕ Cm). We are
interested in the probability P (Z2 = 0). If this probability differs from 1/2, then
we can use this property for the attack. Combining the higher-order differential
with the results on the linear approximation obtained above, we get that P (Z1 =
0) = 1/2 + p/2 and P (Z1 = Z2) = 1/2 + 2m−1qm. Therefore,

P (Z2 = 0) = P (Z1 = 0) · P (Z2 = Z1) + P (Z1 = 1) · P (Z2 �= Z1) =
(1/2 + p/2)(1/2 + 2m−1qm) + (1/2− p/2)(1/2− 2m−1qm) = 1/2 + 2m−1pqm.

Q.E.D.

Note that differential-linear cryptanalysis can be considered as a special case
of higher-order differential-linear cryptanalysis, where the size of the structure
is 2. Using Formula (4), the bias of the approximation is b̂ = 2pq2.

4.3 Applications of Higher-Order Differential-Linear Cryptanalysis

Our first application of the higher-order differential-linear cryptanalysis is a
generic attack. Let E be a Feistel block cipher with a bijective round func-
tion F . Denote the block size of E by 2n. Assume that E has an r-round linear
approximation with bias 1/2. We combine this r-round linear approximation
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with a 3-round higher-order differential that exists with probability 1 for all
such ciphers.

Let a word that is constant for all plaintexts in the structure be denoted by C.
Let a word that assumes all possible values (a permutation) for a given structure
be denoted by P , and let a word in which the XOR value of all the plaintexts
in the structure is zero be denoted by B. For example (P, P ) is a structure of
2n plaintexts, where every possible value of the left half appears once, as well as
every possible value of the right half (and we assume no relation between these
instances). Another example is (B,C) — a structure of 2n plaintexts where the
right half is fixed in all the plaintexts, and the XOR of all the values in the left
half is zero.

For the Feistel cipher described above, the following 3-round higher-order
differential holds with probability 1:

(P,C) F→ (C,P ) F→ (P, P ) F→ (P,B).

(This kind of property was first used in [4] with different attack methods). As
can be seen from the higher-order differential, the attacker knows for certain
that the XOR of the texts in the structure at the end of round 3 is 0, and the
same is true for the XOR value in any specific bit as well. The 3-round higher-
order differential can be combined with the linear approximation to devise a
(k + 3)-round higher-order differential-linear approximation of the cipher. The
overall bias of the approximation is 1/2, and thus the approximation requires
several structures of 2n chosen plaintexts to distinguish between the cipher and
a random permutation.

This generic attack can be applied to FEAL [33]. FEAL is a 64-bit Feistel
block cipher, with a bijective round function. There exists a linear approximation
for three rounds of the cipher with bias 1/2 (see [31] for details). We can combine
this linear approximation with the 3-round higher-order differential to devise
a 6-round higher-order differential-linear approximation with bias 1/2 (and a
set size of 232 plaintexts), and use it to distinguish between FEAL-6 and a
random permutation. This distinguisher can be used in a key recovery attacks
on FEAL-7 and FEAL-8. Even though these attacks are far from being the best
known attacks, they demonstrate the feasibility of higher-order differential-linear
cryptanalysis.

Another application of this technique is a weak key class of the block cipher
IDEA [26]. IDEA has a 64-bit block size and it consists of 8.5 rounds. It is based
on operations on four words of 16-bit each.

There is a weak key class of 232 keys, each having zero in 96 positions, that
can be detected using a higher-order differential-linear attack. The underlying
linear approximation is the one used in the linear weak key class of IDEA of 223

keys in [17]. The approximation has bias 1/2, and it propagates through IDEA
by exploiting the fact that for the weak key class the multiplication operation
can be approximated with bias 1/2.

Our weak key class uses a 3-round higher-order differential that starts with
sets of the form (P,C, P,C), for which after three rounds the XOR of the least



New Combined Attacks on Block Ciphers 139

significant bits of the first and the second words are zero. The linear approxi-
mation is used in the remaining 5.5 rounds, and it has a bias of 1/2. Thus, for
this weak key class, the output mask of all ciphertexts in a given set is the same.
We can use this fact and about 100 sets to identify whether the key used in the
encryption is in the weak key class.

We conclude that our new weak key class contains 232 keys, 512 times more
keys than the original linear weak key class. The membership tests requires about
223 chosen plaintexts with a negligible amount of computation time.

We conclude that the higher-order differential-linear attack is feasible, and
that in some cases it can be used to improve existing attacks and to devise
new attacks. At this stage we have not found a published cipher for which our
new technique yields the best attack, even though it is clear that one can easily
“engineer” a dedicated cipher with this property.

4.4 Related Work

We first note that the higher-order differential-linear attack was developed inde-
pendently in [34] under the name square-nonlinear attack. The attack combines a
SQUARE property with a nonlinear approximation whose input is linear. Thus,
the analysis can be reproduced, and despite the non-linear nature of the attack,
the biases behave in the same way. The square-nonlinear attack was used to
attack reduced round version of SHACAL-2.

Another related work is the chosen plaintext linear attack [23]. In the cho-
sen plaintext linear attack, the attacker encrypts structures of plaintexts, chosen
such that the input mask is the same for all values in the structure. An alter-
native description would say that the set is chosen such that the difference of
the intermediate encryption values is 0 in the bits considered by the approxi-
mation. In such a case the attacker can examine only the output parities. This
method can be used to either eliminate rounds from the approximation, or to
reduce the number of candidate subkeys (as rounds before the approximation
no longer play an active role in determining whether the approximation holds
or not).

While there are similarities between the chosen plaintext linear attack and
our higher-order differential-linear attack, there are also major differences. Our
proposed technique looks for the XOR of all ciphertexts in the set, while the
chosen plaintext linear attack examines the approximation in each ciphertext
separately.

Actually, chosen plaintext linear attack will usually lead to a better attack, as
it takes into consideration each plaintext/ciphertext pair, rather than performs
an operation that “cancels” the information conveyed in 216 (or even more) plain-
text/ciphertext pairs. On the other hand, the chosen plaintext linear attack fixes
bits of the plaintext, leading to a smaller number of possible plaintext/ciphertext
values. Another advantage of our attack is its ability to “correct” wrong struc-
tures, i.e., assume that the input mask is biased with some probability (rather
than fixed).



140 E. Biham, O. Dunkelman, and N. Keller

5 Combining the Boomerang Attack with Linear and
Bilinear Techniques

5.1 The Boomerang Attack

The main idea behind the boomerang attack [36] is to use two short differentials
with relatively high probabilities instead of one long differential with very low
probability. The attack treats the block cipher E : {0, 1}n×{0, 1}k→{0, 1}n as
a cascade E = E1 ◦ E0, such that for E0 there exists a differential α → β with
probability p0, and for E1 there exists a differential γ → δ with probability p1.
The distinguisher performs the following boomerang process:

– Ask for the encryption of a pair of plaintexts (P1, P2), such that P1⊕P2 = α,
and denote the corresponding ciphertexts by (C1, C2).

– Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P3, P4).

– Check whether P3 ⊕ P4 = α.

We denote the intermediate encryption value of Pi (or the intermediate de-
cryption value of Ci) between E0 and E1 by Xi, i.e., Xi = E0(Pi) = E−1

1 (Ci). If
(P1, P2) is a right pair with respect to the first differential, then X1⊕X2 = β. If
both pairs (C1, C3) and (C2, C4) are right pairs with respect to the second dif-
ferential, then X1⊕X3 = γ = X2 ⊕X4. If all these conditions are satisfied then
X3 ⊕X4 = β. The boomerang attack uses the obtained β value by decrypting
the pair (X3, X4), which with probability p0 leads to P3 ⊕ P4 = α. The overall
probability of such a quartet is p2

0p
2
1.

The attack can be mounted for all possible β’s and γ’s simultaneously (as
long as β �= γ). Thus, a right quartet for E is encountered with probability no
less than (p̂0p̂1)2, where:

p̂0 =
√∑

β

Pr 2[α → β], and p̂1 =
√∑

γ

Pr 2[γ → δ].

The complete analysis is given in [36]. In particular it is possible to show that
for a specific value of β, and the corresponding probability p0 and all γ’s si-
multaneously, the probability for X3 ⊕X4 = β is p0p̂1

2. We shall use this fact
later.

5.2 Differential-Bilinear-Boomerang Attack (and Relatives)

We first note that linear, differential-linear, and bilinear approximations, are
special cases of differential-bilinear approximations (up to whether we consider
pairs of plaintexts or plaintext/ciphertext pairs). Hence, if we can combine the
differential-bilinear attack with some other attack, we can actually combine any
of the linear, the differential-linear, or the bilinear attacks as well.

Our newly proposed attacks exploit the β difference between the intermediate
decryption values X3 and X4 of the encryptions whose ciphertexts are C3 and C4.
If there is a differential-bilinear approximation for E−1

0 (the decryption through
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E0), then the pair (X3, X4) has the required input difference, and thus, there is
some bilinear relation between X3 and X4 whose probability (or bias) is non-
trivial.

More formally, let (X3, X4) (generated by the partial decryption of C3 and
C4 during the boomerang process) be with difference β. Assume that there
exists a differential-bilinear approximation with bias 2pq2 for E−1

0 with input
difference β. Thus, it is possible to analyze the corresponding plaintexts as in
the differential-bilinear attack, just like as suggested in Section 3.

However, the pair (X3, X4) does not always have the required difference β,
which occurs with probability p0p̂

2
1. By performing the analysis of the differential-

bilinear attack again, and taking into consideration the probability that the β
difference occurs, we conclude that the differential-bilinear relation has a bias of
2p̂2

1p0pq2.
Actually, we treat the first sub-cipher E0 as a cascade of two sub-sub-ciphers,

i.e, E0 = E01 ◦E00 . The differential is used in the the first part of the backward
direction, i.e., in E−1

01
, while the bilinear approximation is used in the second par

of E−1
00

(also in the backward direction).
The differential-bilinear boomerang attack tries to obtain a difference be-

tween two intermediate encryption values in the transition between the first
sub-sub-cipher and the second sub-sub-cipher (both are parts of the first sub-
cipher). This is a somewhat “asymmetric” boomerang, where for the first pair
(P1, P2) we have a different number of rounds in the first sub-cipher than for the
pair (P3, P4).

As the bias of the differential-bilinear boomerang is very low, it might seem
that using other techniques based on decomposing the cipher into sub-cipher is
always better than this attack. Even though currently we have no example where
this attack is better than other combinations, we believe such cases exist.

We start with showing that there are cases where the proposed attack can
be better than the boomerang attack. At a first glance, even if we assume that
the bias of the differential-bilinear approximation of E0 is 1/2, then the bias
of the whole differential-bilinear boomerang approximation is p̂2

1p0. Thus, the
data complexity of the differential-bilinear boomerang attack is expected to be
at least O(p̂−4

1 p−2
0 ), while a regular boomerang attack requires a usually smaller

data complexity of O(p̂−2
0 p̂−2

1 ). However, this is true only for a boomerang attack
that uses regular differentials. In such case, the probability of the differential in
the decryption direction is equal to the probability in the encryption direction.
But in some boomerang attacks, truncated differential are used, and for these
kind of differentials the probability depends on the direction. Thus, it might lead
to an attack which is better than the boomerang attack, if for example, there is
a truncated differential that is used in the forward direction of E0, but cannot
be used in the backward direction due to low probability.

Another attack that can be used instead of the differential-bilinear boomerang
is the differential-(bi)linear attack. As mentioned before, there is a good differ-
ential in the backward direction, and a good bilinear approximation. The reason
why this process might yield a better attack is that the difference predicted by
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the differential after the partial decryption may not be suitable for concatena-
tion with a bilinear approximation. In this case, the boomerang process is used
to change the difference to a more “friendly” one.

For linear (or differential-linear) cryptanalysis, where the exact difference
has a much smaller effect, the answer is different. Usually, it is assumed that
the approximation has an independent random behavior for any two plaintexts,
even if there is some constant difference between them. The chosen ciphertext
linear cryptanalysis [23] has shown that this is not the case, and that the actual
values encrypted can alter the probabilities related to the approximation. Hence,
the bias of the linear approximation may increase if there is a specific difference,
instead of some random difference. Such an increase would lead to an higher
biases, which in turn would mean better attacks.

6 Summary

In this paper we presented several new combined attacks. Each of these combina-
tions has scenarios where it yields an attack that may be better than differential-
linear attacks, differential attacks, or linear attacks for some ciphers.

The differential-bilinear attack, the higher-order differential-linear attack,
and the (differential-)(bi)linear boomerang attack, are examples of attacks based
on treating the cipher as a cascade of sub-ciphers. This kind of treatment allows
us to present a a differential-bilinear approximation for 6-round s5DES with a
bias of 1/8. The decomposition into sub-ciphers can be used to enlarge the linear
weak-key class of IDEA by a factor of 512.

We conclude that new designs have to take into consideration combined at-
tacks, including the well-known ones such as differential-linear and boomerang
attacks, as well as the new ones presented in this paper.
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Abstract. In this paper we define small scale variants of the AES. These
variants inherit the design features of the AES and provide a suitable
framework for comparing different cryptanalytic methods. In particular,
we provide some preliminary results and insights when using off-the-
shelf computational algebra techniques to solve the systems of equations
arising from these small scale variants.

1 Introduction

The potential for algebraic attacks [1, 2, 8] on the AES [4, 11] has been the source
of recent speculation. Two important (and complementary) approaches to the
algebraic analysis of the AES were provided in [2] and [8]. In [2] it was shown
how recovering an AES encryption key could be viewed as solving a set of sparse
overdefined multivariate quadratic equations over GF (2) and a method—the
XSL method—for solving this set of AES-specific equations was proposed. In [8]
the AES was embedded in a related cipher (called the BES) and it was shown
how recovering an AES encryption key could be viewed as solving a similar set
of equations over GF (28). The highly structured equation systems that result
from this approach may well be more tractable than those arising from a GF (2)
perspective [8, 9].

Currently, however, it is unknown whether the XSL—or any other proposed
method of solution—works on the AES. For most types of cryptanalysis it is
straightforward to perform experiments on reduced versions of the cipher to
understand how an attack might perform. However this is not so easy for the
AES, and while some experiments have been conducted [2], the equation sys-
tems used were very different from those that might actually arise from the
AES.

With this goal in mind, we specify a family of small scale variants of the AES.
Previous variants have been used before as an educational tool [10, 12], but our
aim is to provide a fully parameterised framework for the analysis of AES equa-
tion systems. We describe how to construct the equation systems corresponding
to these small scale variants of the AES, and give an example of such a system

� This author was supported by EPSRC Grant GR/S42637.

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 145–162, 2005.
c© International Association for Cryptologic Research 2005



146 C. Cid, S. Murphy, and M.J.B. Robshaw

derived using the BES-style embedding. We report on some preliminary analysis
of a number of small scale variants and provide the first experimental insight
into the behaviour of algebraic cryptanalysis on AES-like ciphers.

2 Small Variants of the AES

We define two sets of small scale variants of the AES; these differ in the form of
the final round. These two sets of variants will be denoted by SR(n, r, c, e) and
SR∗(n, r, c, e).

2.1 Small Scale AES Parameters

Both SR(n, r, c, e) and SR∗(n, r, c, e) are parameterised in the following way:

– n is the number of (encryption) rounds;
– r is the number of “rows” in the rectangular arrangement of the input;
– c is the number of “columns” in the rectangular arrangement of the input;
– e is the size (in bits) of a word.

SR(n, r, c, e) and SR∗(n, r, c, e) both have n rounds and a block size of rce
bits, where a data block is viewed as an array of (r × c) “words” of e bits. We
will see that the full AES is equivalent to SR∗(10, 4, 4, 8).

Number of Rounds n. The AES is an iterated block cipher consisting of 10
rounds. The typical round uses four different operations. The small scale variants
SR(n, r, c, e) and SR∗(n, r, c, e) consist of n rounds, with 1 ≤ n ≤ 10, using small
scale variants of these operations. These operations are specified in Section 2.2.

Data Block Array Size (r × c). Each element of the data array is a word of
size e bits. The array itself has r rows and c columns. We consider small scale
variants of the AES with both r and c restricted to 1, 2, or 4. Some examples
are given below. Note that we adopt the AES-style of numbering “words” within
an array and work by column first.

0
0
1

0 2
1 3

0 4
1 5
2 6
3 7

0 2 4 6
1 3 5 7

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Word Size e. We define small scale variants of the AES for word sizes e = 4
and e = 8. It is natural within the context of the AES to regard a word of size
e as an element of the field GF (2e). Thus we define small scale variants of the
AES with respect to the two fields GF (24) and GF (28).

The small scale variants SR(n, r, c, 4) and SR∗(n, r, c, 4) use the field GF (24).
We use the primitive polynomial X4 +X +1 over GF (2) to define this field. We
let ρ be a root of this polynomial, so



Small Scale Variants of the AES 147

GF (24) =
GF (2)[X]

(X4 + X + 1)
= GF (2)(ρ).

When referring to elements of GF (24), we sometimes use hexadecimal notation,
so that D = ρ3 + ρ2 + 1 and so on.

The small scale variants of the AES with word size 8, SR(n, r, c, 8) and
SR∗(n, r, c, 8), use the field GF (28). The Rijndael polynomial X8 + X4 + X3 +
X+1 over GF (2) is used to define this field. We let θ be a root of this polynomial,
so

GF (28) =
GF (2)[X]

(X8 + X4 + X3 + X + 1)
= GF (2)(θ).

When referring to elements of GF (28), we again sometimes use hexadecimal
notation, so that D1 = θ7 + θ6 + θ4 + 1 and so on.

2.2 Small Scale Round Operations

Each round of the AES consists of some combination of the following operations:

1. SubBytes
2. ShiftRows
3. MixColumns
4. AddRoundKey

A round of the small scale variants of the AES consists of small scale variants
of these operations. For the last round of the AES, the operation MixColumns is
omitted. Similarly, for SR∗(n, r, c, e) the final round does not use MixColumns,
whereas MixColumns is retained for the final round of SR(n, r, c, e). The AES is
thus identical to SR∗(10, 4, 4, 8).

Note that the two ciphertexts produced by SR(n, r, c, e) and SR∗(n, r, c, e)
when encrypting the same plaintext under the same key are related by an affine
mapping. A solution of the system of equations for one cipher would immediately
give a solution for the other and so, without loss of generality, we only consider
SR(n, r, c, e) for the remainder of this paper.

SubBytes. The operation SubBytes uses an S-Box and is defined to be the
simultaneous application of the S-Box to each element of the data array. For
the small scale variants SR(n, r, c, 4) based on the field GF (24), we define the
S-Box by analogy with the AES. Thus this S-box consists of the following three
(sequential) operations.

1. Inversion. The first operation of the S-Box is an inversion in the field GF (24)
(with 0 �→ 0), using the representation defined in Section 2.1. The look-up
table for this inversion map is given below.

Inversion in GF (24)
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 0 1 9 E D B 7 6 F 2 C 5 A 4 3 8
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2. GF (2)-linear map. The output of the inversion is the input to a GF (2)-
linear map. This GF (2)-linear map is given by (the pre-multiplication by)
the circulant GF (2)-matrix ⎛⎜⎜⎝

1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

⎞⎟⎟⎠
with respect to the “FIPS component ordering” [11]. The look-up table for
the GF (2)-linear map is given below.

GF (2)-linear map in GF (24)
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 0 D B 6 7 A C 1 E 3 5 8 9 4 2 F

Note that this GF (2)-linear map can also be expressed as the linearised
polynomial f(X) = λ0X

20
+λ1X

21
+λ2X

22
+λ3X

23
, where (λ0, λ1, λ2, λ3) =

(5, 1, C, 5). Thus we have

f(X) = (ρ2 + 1)X + X2 + (ρ3 + ρ2)X4 + (ρ2 + 1)X8

= 5X + 1X2 + CX4 + 5X8

3. S-Box constant. The S-Box constant 6 (or equivalently ρ2 + ρ) is added (as
an element of GF (24)) to the output of the GF (2)-linear map. This result
is the output of the S-Box.

The look-up table for the entire S-Box is given below.

S-Box over GF (24)
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 6 B 5 4 2 E 7 A 9 D F C 3 1 0 8

For the small scale variants SR(n, r, c, 8) we use the AES S-Box. The values
of the S-box operation over GF (28) are available in the AES specification [11].

S-Box Summary GF (24) GF (28)

Irreducible polynomial X4 + X + 1 X8 + X4 + X3 + X + 1

GF (2)-linear map

⎛⎜⎝ 1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Constant 6 63
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ShiftRows. The ShiftRows operation is defined to be the simultaneous (left)
rotation of the row i of the data array, 0 ≤ i ≤ r − 1, by i positions. This is
independent of the number of columns and the top row is fixed by this operation.

MixColumns. The MixColumns operation pre-multiplies each column of the data
array by an invertible circulant GF (2e)-matrix with row (and column) sum 1.
These matrices are all MDS matrices (see [4]) and the choice of matrix in a small
scale variant depends on the number of rows in the data array.

Number of Rows GF (24) GF (28)
r = 1

(
1
) (

1
)

r = 2
(

ρ + 1 ρ
ρ ρ + 1

) (
θ + 1 θ

θ θ + 1

)

r = 4

⎛⎜⎜⎝
ρ ρ + 1 1 1
1 ρ ρ + 1 1
1 1 ρ ρ + 1

ρ + 1 1 1 ρ

⎞⎟⎟⎠
⎛⎜⎜⎝

θ θ + 1 1 1
1 θ θ + 1 1
1 1 θ θ + 1

θ + 1 1 1 θ

⎞⎟⎟⎠
AddRoundKey. The key schedule (described in Section 2.3) for an n-round small
scale variant of the AES produces n + 1 subkey blocks. AddRoundKey simulta-
neously adds (as elements of GF (2e)) each element of the subkey block to some
intermediate data block. Since the AES begins with an initial AddRoundKey, the
small scale variants SR(n, r, c, e) also begin with this operation.

2.3 Small Scale Key Schedule

The structure of one round of the AES key schedule is illustrated below left (we
only consider equal block and key sizes). Each vertical line represents one column
of bytes, and Fi is the non-linear key schedule function for round i applied to
one column of the array holding the previous round key. The function Fi consists
of the application of the AES S-Box to all r components of the column, along
with a word-based rotation and addition of a constant. When considering small
scale analogues, we use this standard key schedule structure for four columns
(c = 4). For two columns or one column (c = 2 or c = 1) we use the key schedule
structures given by the diagrams below center and below right respectively.
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Using this framework we can define key schedules for the small scale variants.
SR(n, r, c, e) has a user-provided key of size rce bits, which is considered to be
an array of (r × c) e-bits words. This key forms the initial subkey. Each subkey
is then used to define the succeeding subkeys. We provide a full description of
the small scale key schedules in Appendix A.

3 Multivariate Quadratic Equation Systems

The existence of a sparse multivariate quadratic equation system over GF (28) for
an AES encryption was shown by defining a new block cipher, the Big Encryption
System (BES), as well as a “BES”-embedding of the AES [8]. The main idea of
the BES-embedding is to use the vector conjugate mapping φ to embed the AES
into the larger cipher BES [8].

This technique can be used to derive sparse multivariate quadratic equation
systems over GF (2e) for the small scale variants of the AES. This is based on
the vector conjugate mapping φ for GF (24) defined by

φ(a) =
(
a20

, a21
, a22

, a23
)T

.

Any element a ∈ GF (24) can be embedded as an element (a, a2, a4, a8)T ∈
GF (24)4 under φ. We now describe how operations on a data block a in small
scale variants SR(n, r, c, 4) can be replicated by operations on the vector con-
jugate φ(a). Further details and the justification for these operations are given
in [8].

SubBytes. Consider the three component operations of the S-box separately.

1. Inversion. The operation of inversion can be replicated by the component-
wise inversion of the vector conjugate.

2. GF (2)-linear map. The effect of the GF (2)-linear map can by replicated by
pre-multiplying the (column) vector conjugate by the matrix⎛⎜⎜⎝

λ0 λ1 λ2 λ3

λ2
3 λ2

0 λ2
1 λ2

2

λ4
2 λ4

3 λ4
0 λ4

1

λ8
1 λ8

2 λ8
3 λ8

0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
5 1 C 5
2 2 1 F
A 4 4 1
1 8 3 3

⎞⎟⎟⎠ ,

where (λ0, λ1, λ2, λ3) are the coefficients of the linearised polynomial given
previously.

3. S-Box constant. The effect of adding 6 to a data array element can be repli-
cated by adding (6, 7, 6, 7)T to its vector conjugate.

ShiftRows. The effect of ShiftRows on the conjugate embedding can be easily
replicated for the small variants SR(n, r, c, 4). For example, the operation on
SR(n, 1, 1, 4), SR(n, 2, 1, 4) and SR(n, 2, 2, 4) is given by the following matrices,
where I4 denotes the 4× 4 identity matrix over GF (24):
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(
I4

)
,

(
I4 0
0 I4

)
, and

⎛⎜⎜⎝
I4 0 0 0
0 0 0 I4

0 0 I4 0
0 I4 0 0

⎞⎟⎟⎠ .

MixColumns. The effect of multiplying a field element by some other field ele-
ment z can be replicated by pre-multiplying its (column) vector conjugate by
the diagonal matrix

Dz =

⎛⎜⎜⎝
z 0 0 0
0 z2 0 0
0 0 z4 0
0 0 0 z8

⎞⎟⎟⎠ .

Clearly MixColumns is a trivial operation when r = 1. For r = 2 and r = 4 the
effect of MixColumns can be replicated by pre-multiplying the vector conjugates
of the column of the corresponding data array by the matrices

(
Dρ+1 Dρ

Dρ Dρ+1

)
and

⎛⎜⎜⎝
Dρ Dρ+1 1 1
1 Dρ Dρ+1 1
1 1 Dρ Dρ+1

Dρ+1 1 1 Dρ

⎞⎟⎟⎠ respectively.

AddRoundKey. This operation can be replicated by adding the appropriate vec-
tor conjugates. As the key schedule essentially uses the same operations as the
encryption process, it can also be easily replicated using vector conjugates.

Since inversion is the only non-linear part of the round function, we can
move the S-Box constant into a slightly modified key schedule and construct an
augmented linear diffusion layer consisting of the GF (2)-linear map, ShiftRows
and MixColumns [7]. This augmented linear diffusion layer is given by an (rc×rc)
matrix; examples of this useful representation are given in Appendix B.

In Appendix C, we give an example of a multivariate quadratic equation
system for SR(2, 2, 2, 4), as well as a link to a website where systems for other
small scale variants can be downloaded from. The given systems are constructed
using the “BES-style” embedding. If the plaintext and ciphertext are known,
which we assume, then the given equations are sufficient. If they are unknown,
then the plaintext and ciphertext can be treated as variables. We note that
whilst the system of equations is systematic, it does not form a minimal sys-
tem. Furthermore, the systems of equations presented are correct only if no
0-inversion is performed either in the key schedule or in the encryption rounds.
The probability of any particular inversion being a 0-inversion is 2−e, so the
probability that the entire equation system is free from 0-inversions can be eas-
ily estimated. In general, equations for the small scale variants can be easily
established and the number of equations and variables for different variants are
given here:
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Equations State Variables Key Variables
Encryption (4n + 1)rce 2nrce (n + 1)rce

Key Schedule 2nrce + 2nre + rce - nre (additional)
Total (6n + 1)rce + 2nre + rce 2nrce (n + 1)rce + nre

An alternative approach would be to work with equation systems over GF (2),
as originally proposed in [2]. If w, x ∈ GF (2e) are the input and output respec-
tively of the “AES inversion”, the relation wx = 1 gives rise to e bilinear expres-
sions over GF (2). Furthermore, we also have the “associated inversion” relations
w2x = w and wx2 = x, each of which give e further independent relations at the
bit level. While there are also further relations of the form w4x = w2 · w and
wx4 = x · x2, we do not consider these. Using these expressions and those de-
rived from the linear layer, we can construct a system of multivariate quadratic
equations over GF (2) in a similar manner to that given by [2]. In Section 4 we
present the results of some experiments using both the GF (2) and the BES-style
representations.

4 Experimental Results

In this section we describe some experimental results concerning the solution of
the equation systems that arise for these small scale variants of AES. These are
basic timing experiments for the solution of the relevant system of equations by
computing the Gröbner basis of the related polynomial ideal. The computations
were made using the MAGMA 2.11-1 computer algebra package [6], which in-
cludes a highly efficient (particularly for GF (2)) implementation of Faugère’s
F4 algorithm [5]. In general, the Gröbner bases were computed with respect to
the graded reverse lexicographic monomial ordering. All experiments were per-
formed on a HP workstation, with Pentium 4 - 3GHz processor, 1 GB RAM,
running Windows XP.

We are aware of the limitations of performing simple timings experiments
using off-the-shelf software with limited computing resources. However we believe
that such experiments can still be helpful in a preliminary assessment of algebraic
attacks as cryptanalytic techniques. And while particularly degenerate small
scale variants might not exhibit all the features of the AES, a comparison of
attacks on such variants will help to provide an understanding of how various
components and representations of the cipher contribute to the complexity of
algebraic attacks.

4.1 SR(n, 1, 1, e)

We ran experiments with the simple variants SR(n, 1, 1, 4) and SR(n, 1, 1, 8)
for different number of rounds. We performed computations using the BES-
style equation system over GF (2e), as well as the equation system over GF (2).
The GF (2) equation systems are similar to that given in [2] with the addition
of all field polynomials of the form z2 + z. Table 1 shows the results for the
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Table 1. Time (in seconds) for Gröbner Basis computation of the GF (2e) and GF (2)
equation systems that arise from SR(n, 1, 1, e) (using graded reverse lexicographic
monomial ordering)

Cipher Variables Equations Monomials Time Equations Monomials Time
GF (2e) GF (2e) GF (2) GF (2)

SR(2,1,1,4) 36 72 89 0.11 104 137 0.03

SR(3,1,1,4) 52 104 129 0.75 152 201 0.11

SR(4,1,1,4) 68 136 169 2.02 200 265 0.28

SR(5,1,1,4) 84 168 209 7.47 248 339 0.97

SR(6,1,1,4) 100 200 249 23.71 296 393 4.30

SR(7,1,1,4) 116 232 289 56.74 344 457 11.26

SR(8,1,1,4) 132 264 329 43.70 392 521 16.56

SR(9,1,1,4) 148 296 369 219.38 440 585 46.05

SR(10,1,1,4) 164 328 409 340.31 488 649 74.06

SR(2,1,1,8) 72 144 177 43.55 172 365 118.45

SR(3,1,1,8) 104 208 257 N/A 252 541 N/A

computations; timings are given in seconds and N/A denotes insufficient memory
to complete the computation.

In view of their simple form, we would expect to solve such equation systems
for many rounds. This happened for SR(n, 1, 1, 4), where we ran tests for up to
10 rounds. However the time required varied greatly when we changed the order-
ing of variables. When working with the cipher SR(n, 1, 1, 8), we had problems
with insufficient memory as early as three rounds. In particular, we note that
the system for SR(3, 1, 1, 8) has a similar number of variables, monomials and
equations as the system for SR(6, 1, 1, 4). Thus we might expect a similar perfor-
mance for these two systems. However, our results show that this is not the case.
This suggests that the underlying field equations, which are implicitly included
in the BES-style equations, may play an important role in the computations for
solving the system. However, this is yet to be established.

By comparing the results in Table 1, it is clear that the timings of compu-
tations for SR(n, 1, 1, 4) over GF (2) are much better than those over GF (24).
However it is not clear whether this means that bit-level equations offer a better
representation than BES-style equations in general, since MAGMA’s implemen-
tation of the F4 algorithm is heavily optimised for operations over GF (2) [13].
(In fact we see the opposite behaviour occurring for the cipher SR(n, 1, 1, 8).)
Given the highly structured form of the BES-style systems we would expect com-
putations using equation sets over GF (2e) to be generally more efficient than
those over GF (2).

4.2 SR(n, 2, 1, 4) and SR(n, 2, 2, 4)

Some basic timing experiments with the systems derived from the variants
SR(n, 2, 1, 4) and SR(n, 2, 2, 4) are given below. For these two variants, we also
used MAGMA’s implementation of Buchberger’s algorithm in addition to com-
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Table 2. Time (in seconds) for Gröbner Basis computation of GF (24) equation sys-
tems with F4 and Buchberger’s algorithm (using graded reverse lexicographic monomial
ordering)

Cipher Variables Equations Monomials Time Time
F4 Buchberger

SR(1,2,1,4) 40 80 97 0.22 1.11

SR(2,2,1,4) 72 144 177 24.55 40.58

SR(3,2,1,4) 104 208 257 519.92 2649.90

SR(4,2,1,4) 136 272 337 N/A 28999.41

SR(1,2,2,4) 72 144 169 27.73 444.07

SR(2,2,2,4) 128 256 305 N/A N/A

putations of the Gröbner bases using the F4 algorithm. While we would expect
Buchberger’s algorithm to be slower, it should require less memory than the F4
algorithm. As before, timings are given in seconds, with N/A meaning insufficient
memory to complete the computation (see Table 2).

By comparing the results in Table 2, we note that the equation system
derived from SR(4, 2, 1, 4) has a similar number of variables, monomials and
equations as the equation system arising from SR(2, 2, 2, 4). Therefore we might
expect a similar performance in the computation for these two systems. How-
ever, our results confirm the important role played by the inter-word diffusion
in the complexity of the computations. The diffusion of SR(n, 2, 1, 4) is lim-
ited, whereas SR(n, 2, 2, 4) has a similar diffusion pattern to that seen in the
AES.

4.3 Meet-in-the-Middle Approach

Our experiments used the exact equation systems discussed in this paper; no
pre-computation was performed and we did not explore any special structure.
However it is well-known that the equation systems derived from the AES are
highly structured, especially when represented as the set of BES-style equations
over GF (2e). In particular, these systems might be viewed as “iterated” systems
of equations, with similar blocks of multivariate quadratic equations repeated
for every round. These blocks are connected to each other via the input and
output variables, as well as the key schedule. When working with systems with
such structure, a promising technique to find the overall solution is, in effect,
a meet-in-the-middle approach: rather than attempting to solve the full system
of equations for n rounds (we assume that n is even), we can try to solve two
subsystems with n

2 rounds, by considering the output of round n
2 (which is also

the input of round n
2 + 1) as variables. By choosing an appropriate monomial

ordering we obtain two sets of equations (each covering half of the encryption
operation) that relate these variables with the round subkeys. These two sys-
tems can then be combined along with some other equations relating the round
subkeys. This gives a third smaller system which can be solved to obtain the
encryption key.
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Table 3. Time (in seconds) for the meet-in-the-middle approach using F4 Gröbner
Basis computation of equation systems arising from SR(10, 1, 1, 4), SR(4, 1, 1, 8) and
SR(4, 2, 1, 4) using lexicographic ordering

Cipher Variables Equations Monomials Time

SR(10,1,1,4) - 5 rounds ↓ 88 172 217 19.22

SR(10,1,1,4) - 5 rounds ↑ 76 148 189 22.41

Solve 16 40 52 0.02

Total: 41.65

SR(4,1,1,8) - 2 rounds ↓ 80 152 193 15466.37

SR(4,1,1,8) - 2 rounds ↑ 56 104 137 4603.89

Solve 32 80 576 215.92

Total: 20286.18

SR(4,2,1,4) - 2 rounds ↓ 80 152 193 667.17

SR(4,2,1,4) - 2 rounds ↑ 56 104 137 2722.43

Solve 80 176 524 14.87

Total: 3404.47

We have tried this approach with some of the AES variants and compared
the results with the timings obtained earlier. Our experiments suggest that this
approach may be more efficient. For example, we were able to solve the system
for SR(10, 1, 1, 4) using this approach in 42 seconds compared with 340 seconds
using the naive approach. We also obtained better results for SR(4, 1, 1, 8) and
SR(4, 2, 1, 4) using this approach (see Table 3).

This technique is cryptographically intuitive and is in fact a simple applica-
tion of Elimination Theory [3], in which the Gröbner bases are computed with
respect to the appropriate monomial ordering to eliminate the variables that
do not appear in rounds n

2 and n
2 + 1. One problem with this approach is that

computations using elimination orderings (such as lexicographic) are usually less
efficient than those with degree orderings (such as graded reverse lexicographic).
Thus, for more complex systems, we might expect that using lexicographic order-
ing in the two main subsystems would yield only limited benefit when compared
with graded reverse lexicographic ordering for the full system. As an alternative,

Table 4. Time (in seconds) for the meet-in-the-middle approach using F4 Gröbner
Basis computation of equation systems arising from SR(4, 2, 1, 4) using graded reverse
lexicographic monomial ordering

Cipher Variables Equations Monomials Time

SR(4,2,1,4) - 2 rounds ↓ 112 216 273 553.63

SR(4,2,1,4) - 2 rounds ↑ 104 200 257 1501.41

Solve 136 1197 918 12.68

Total: 2067.72



156 C. Cid, S. Murphy, and M.J.B. Robshaw

we could simply compute the Gröbner bases for the two subsystems (using the
most efficient ordering) and combine both results to compute the solution of
the full set equations. While this approach was more expensive for the variant
SR(10, 1, 1, 4), it was more efficient for the cipher SR(4, 2, 1, 4) (see Table 4).

These results suggest the applicability of a more general divide-and-conquer
approach to this problem, in which some form of (perhaps largely symbolic)
pre-computation could be performed and then combined to produce the solution
of the full system. This might be a promising direction and more research will
assess whether this approach might increase the efficiency of algebraic attacks
against the AES and related ciphers.

5 Conclusions

We have defined a family of small scale variants of the AES. This provides a com-
mon framework for the analysis of AES-like equation systems. We also present
some basic experimental results when using off-the-shelf computational algebra
techniques to solve these systems. These provide some preliminary insight into
the behavior of algebraic attacks and future work can now take place within a
framework for the systematic analysis of small scale AES variants.
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Appendix A: Key Schedule Equations

SR(n, r, c, e) has a user-provided key of rce bits, which is considered to be an
array of (r × c) e-bits words. This key forms the initial subkey. Each subkey is
then used to define the next subkey as described below. This description uses
constants and functions which depend on the field GF (2e). All constants and
functions (apart from the round constant κi) have been discussed elsewhere and
are summarised in the following table.

GF (24) GF (28)
Round constant κi ρ(i−1) θ(i−1)

S-Box constant d 6 63
Inversion z �→ z(−1) Inversion in GF (24) Inversion in GF (28)

GF (2)-linear map z �→ L(z) L for GF (24) L for GF (28)

We regard each round subkey as a column GF (2e)-vector of length rc. In
order to define the key schedule, we effectively divide the round subkey vector
into c subvectors of length r. Thus the subkey vectors are given below.

Initial Subkey
(
k0,0, . . . , k0,r−1, . . . , k0,r(c−1), . . . , k0,rc−1

)T
Round 1 Subkey

(
k1,0, . . . , k1,r−1, . . . , k1,r(c−1), . . . , k1,rc−1

)T
...

...
Round n Subkey

(
kn,0, . . . , kn,r−1, . . . , kn,r(c−1), . . . , kn,rc−1

)T
The definition of the round subkeys now depends on the number of rows (r)
and columns (c) in the array. The round subkeys are defined recursively for each
round 1 ≤ i ≤ n.

Key Schedule for One Row (r = 1).

s0 = k
(−1)
i−1,c−1.

– One column (r = 1, c = 1).

(ki,0) = (L(s0)) + (d) + (κi) .
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– More than one column (r = 1, c > 1). For 0 ≤ q ≤ c− 1

(ki,q) = (L(s0)) + (d) + (κi) +
q∑

t=0

(ki−1,t).

Key Schedule for Two Rows (r = 2).

s0 = k
(−1)
i−1,2c−1, s1 = k

(−1)
i−1,2c−2.

– One column (r = 2, c = 1).(
ki,0

ki,1

)
=
(

L(s0)
L(s1)

)
+
(

d
d

)
+
(

κi

0

)
.

– More than one column (r = 2, c > 1). For 0 ≤ q ≤ c− 1(
ki,rq

ki,rq+1

)
=
(

L(s0)
L(s1)

)
+
(

d
d

)
+
(

κi

0

)
+

q∑
t=0

(
ki−1,rt

ki−1,rt+1

)
.

Key Schedule for Four Rows (r = 4).

s0 = k
(−1)
i−1,4c−1, s1 = k

(−1)
i−1,4c−2, s2 = k

(−1)
i−1,4c−3, s3 = k

(−1)
i−1,4c−4.

– One column (r = 4, c = 1).⎛⎜⎜⎝
ki,0

ki,1

ki,2

ki,3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
L(s0)
L(s1)
L(s2)
L(s3)

⎞⎟⎟⎠+

⎛⎜⎜⎝
d
d
d
d

⎞⎟⎟⎠+

⎛⎜⎜⎝
κi

0
0
0

⎞⎟⎟⎠ .

– More than one column (r = 4, c > 1). For 0 ≤ q ≤ c− 1⎛⎜⎜⎝
ki,rq

ki,rq+1

ki,rq+2

ki,rq+3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
L(s0)
L(s1)
L(s2)
L(s3)

⎞⎟⎟⎠+

⎛⎜⎜⎝
d
d
d
d

⎞⎟⎟⎠+

⎛⎜⎜⎝
κi

0
0
0

⎞⎟⎟⎠+
q∑

t=0

⎛⎜⎜⎝
ki−1,rt

ki−1,rt+1

ki−1,rt+2

ki−1,rt+3

⎞⎟⎟⎠ .

Appendix B: Augmented Linear Diffusion Layer

For small scale variants of the AES, we can construct an augmented linear diffu-
sion layer that consists of the GF (2)-linear map, ShiftRows and MixColumns [7].
This helps to provide a natural set of equations. The augmented linear diffusion
layer can be represented by an (rc × rc) matrix. If we replace every entry z of
this matrix by Dz given earlier, we obtain an (rce×rce) matrix which replicates
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the augmented linear diffusion layer for vector conjugates. We provide these ma-
trices for different array sizes over GF (24). For array sizes (1×1) and (2×1), the
augmented linear diffusion layers for vector conjugates are given by the matrices

⎛⎜⎜⎝
5 1 C 5
2 2 1 F
A 4 4 1
1 8 3 3

⎞⎟⎟⎠ and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 3 7 F A 2 B A
A A 5 6 8 8 4 9
7 8 8 2 D C C 3
4 6 C C 5 E F F
A 2 B A F 3 7 F
8 8 4 9 A A 5 6
D C C 3 7 8 8 2
5 E F F 4 6 C C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, respectively.

For the (2× 2)-array, the augmented diffusion layer is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 3 7 F 0 0 0 0 0 0 0 0 A 2 B A
A A 5 6 0 0 0 0 0 0 0 0 8 8 4 9
7 8 8 2 0 0 0 0 0 0 0 0 D C C 3
4 6 C C 0 0 0 0 0 0 0 0 5 E F F
A 2 B A 0 0 0 0 0 0 0 0 F 3 7 F
8 8 4 9 0 0 0 0 0 0 0 0 A A 5 6
D C C 3 0 0 0 0 0 0 0 0 7 8 8 2
5 E F F 0 0 0 0 0 0 0 0 4 6 C C
0 0 0 0 A 2 B A F 3 7 F 0 0 0 0
0 0 0 0 8 8 4 9 A A 5 6 0 0 0 0
0 0 0 0 D C C 3 7 8 8 2 0 0 0 0
0 0 0 0 5 E F F 4 6 C C 0 0 0 0
0 0 0 0 F 3 7 F A 2 B A 0 0 0 0
0 0 0 0 A A 5 6 8 8 4 9 0 0 0 0
0 0 0 0 7 8 8 2 D C C 3 0 0 0 0
0 0 0 0 4 6 C C 5 E F F 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Appendix C: Equation System for SR(2, 2, 2, 4)

We illustrate the kind of equation systems that arise by listing the BES-style
relations between variables in an SR(2, 2, 2, 4) encryption and key schedule. If
neither the encryption nor the key schedule require a 0-inversion, then each of
these relations is identically 0. Under this assumption, the following relations
give a multivariate quadratic equation system for SR(2, 2, 2, 4) over GF (24).
The probability that the encryption rounds do not require any 0-inversions is
about
(

15
16

)8 ≈ 0.60. The probability that the key schedule does not require any
0-inversions is about

(
15
16

)4 ≈ 0.77. Systems for other small scale variants can be
downloaded from the site http://www.isg.rhul.ac.uk/aes/index.html.

Component j and conjugate l for the plaintext, ciphertext and the key (also
used as the initial subkey) are denoted by pjl, cjl and k0jl respectively. We regard
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the two rounds as round one and round two. We denote the input and output
of the inversion and the subkey used in round i for component j and conjugate
l by wijl, xijl and kijl respectively.

GF (24) Variable Round i Component j Conjugate l

Plaintext pjl 0, 1, 2, 3 0, 1, 2, 3
Ciphertext cjl 0, 1, 2, 3 0, 1, 2, 3

State
Inversion Input wijl 1, 2 0, 1, 2, 3 0, 1, 2, 3

Inversion Output xijl 1, 2 0, 1, 2, 3 0, 1, 2, 3
Key

Subkey kijl 0, 1, 2 0, 1, 2, 3 0, 1, 2, 3
Dummy sijl 0, 1 0, 1 0, 1, 2, 3

Initial Subkey Relations
w100 + p00 + k000 w110 + p10 + k010 w120 + p20 + k020 w130 + p30 + k030

w101 + p01 + k001 w111 + p11 + k011 w121 + p21 + k021 w131 + p31 + k031

w102 + p02 + k002 w112 + p12 + k012 w122 + p22 + k022 w132 + p32 + k032

w103 + p03 + k003 w113 + p13 + k013 w123 + p23 + k023 w133 + p33 + k033

Inversion and Conjugacy Relations: Rounds 1 and 2

w2
100 + w101 w100x100 + 1 x2

100 + x101 w2
200 + w201 w200x200 + 1 x2

200 + x201

w2
101 + w102 w101x101 + 1 x2

101 + x102 w2
201 + w202 w201x201 + 1 x2

201 + x202

w2
102 + w103 w102x102 + 1 x2

102 + x103 w2
202 + w203 w202x202 + 1 x2

202 + x203

w2
103 + w100 w103x103 + 1 x2

103 + x100 w2
203 + w200 w203x203 + 1 x2

203 + x200

w2
110 + w111 w110x110 + 1 x2

110 + x111 w2
210 + w211 w210x210 + 1 x2

210 + x211

w2
111 + w112 w111x111 + 1 x2

111 + x112 w2
211 + w212 w211x211 + 1 x2

211 + x212

w2
112 + w113 w112x112 + 1 x2

112 + x113 w2
212 + w213 w212x212 + 1 x2

212 + x213

w2
113 + w110 w113x113 + 1 x2

113 + x110 w2
213 + w210 w213x213 + 1 x2

213 + x210

w2
120 + w121 w120x120 + 1 x2

120 + x121 w2
220 + w221 w220x220 + 1 x2

220 + x221

w2
121 + w122 w121x121 + 1 x2

121 + x122 w2
221 + w222 w221x221 + 1 x2

221 + x222

w2
122 + w123 w122x122 + 1 x2

122 + x123 w2
222 + w223 w222x222 + 1 x2

222 + x223

w2
123 + w120 w123x123 + 1 x2

123 + x120 w2
223 + w220 w223x223 + 1 x2

223 + x220

w2
130 + w131 w130x130 + 1 x2

130 + x131 w2
230 + w231 w230x230 + 1 x2

230 + x231

w2
131 + w132 w131x131 + 1 x2

131 + x132 w2
231 + w232 w231x231 + 1 x2

231 + x232

w2
132 + w133 w132x132 + 1 x2

132 + x133 w2
232 + w233 w232x232 + 1 x2

232 + x233

w2
133 + w130 w133x133 + 1 x2

133 + x130 w2
233 + w230 w233x233 + 1 x2

233 + x230

Diffusion Relations: Rounds 1 and 2

w200 + Fx100 + 3x101 + 7x102 + Fx103 + Ax130 + 2x131 + Bx132 + Ax133 + k100 + 6

w201 + Ax100 + Ax101 + 5x102 + 6x103 + 8x130 + 8x131 + 4x132 + 9x133 + k101 + 7

w202 + 7x100 + 8x101 + 8x102 + 2x103 + Dx130 + Cx131 + Cx132 + 3x133 + k102 + 6

w203 + 4x100 + 6x101 + Cx102 + Cx103 + 5x130 + Ex131 + Fx132 + Fx133 + k103 + 7
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w210 + Ax100 + 2x101 + Bx102 + Ax103 + Fx130 + 3x131 + 7x132 + Fx133 + k110 + 6

w211 + 8x100 + 8x101 + 4x102 + 9x103 + Ax130 + Ax131 + 5x132 + 6x133 + k111 + 7

w212 + Dx100 + Cx101 + Cx102 + 3x103 + 7x130 + 8x131 + 8x132 + 2x133 + k112 + 6

w213 + 5x100 + Ex101 + Fx102 + Fx103 + 4x130 + 6x131 + Cx132 + Cx133 + k113 + 7

w220 + Ax110 + 2x111 + Bx112 + Ax113 + Fx120 + 3x121 + 7x122 + Fx123 + k120 + 6

w221 + 8x110 + 8x111 + 4x112 + 9x113 + Ax120 + Ax121 + 5x122 + 6x123 + k121 + 7

w222 + Dx110 + Cx111 + Cx112 + 3x113 + 7x120 + 8x121 + 8x122 + 2x123 + k122 + 6

w223 + 5x110 + Ex111 + Fx112 + Fx113 + 4x120 + 6x121 + Cx122 + Cx123 + k123 + 7

w230 + Fx110 + 3x111 + 7x112 + Fx113 + Ax120 + 2x121 + Bx122 + Ax123 + k130 + 6

w231 + Ax110 + Ax111 + 5x112 + 6x113 + 8x120 + 8x121 + 4x122 + 9x123 + k131 + 7

w232 + 7x110 + 8x111 + 8x112 + 2x113 + Dx120 + Cx121 + Cx122 + 3x123 + k132 + 6

w233 + 4x110 + 6x111 + Cx112 + Cx113 + 5x120 + Ex121 + Fx122 + Fx123 + k133 + 7

c00 + Fx200 + 3x201 + 7x202 + Fx203 + Ax230 + 2x231 + Bx232 + Ax233 + k200 + 6

c01 + Ax200 + Ax201 + 5x202 + 6x203 + 8x230 + 8x231 + 4x232 + 9x233 + k201 + 7

c02 + 7x200 + 8x201 + 8x202 + 2x203 + Dx230 + Cx231 + Cx232 + 3x233 + k202 + 6

c03 + 4x200 + 6x201 + Cx202 + Cx203 + 5x230 + Ex231 + Fx232 + Fx233 + k203 + 7

c10 + Ax200 + 2x201 + Bx202 + Ax203 + Fx230 + 3x231 + 7x232 + Fx233 + k210 + 6

c11 + 8x200 + 8x201 + 4x202 + 9x203 + Ax230 + Ax231 + 5x232 + 6x233 + k211 + 7

c12 + Dx200 + Cx201 + Cx202 + 3x203 + 7x230 + 8x231 + 8x232 + 2x233 + k212 + 6

c13 + 5x200 + Ex201 + Fx202 + Fx203 + 4x230 + 6x231 + Cx232 + Cx233 + k213 + 7

c20 + Ax210 + 2x211 + Bx212 + Ax213 + Fx220 + 3x221 + 7x222 + Fx223 + k220 + 6

c21 + 8x210 + 8x211 + 4x212 + 9x213 + Ax220 + Ax221 + 5x222 + 6x223 + k221 + 7

c22 + Dx210 + Cx211 + Cx212 + 3x213 + 7x220 + 8x221 + 8x222 + 2x223 + k222 + 6

c23 + 5x210 + Ex211 + Fx212 + Fx213 + 4x220 + 6x221 + Cx222 + Cx223 + k223 + 7

c30 + Fx210 + 3x211 + 7x212 + Fx213 + Ax220 + 2x221 + Bx222 + Ax223 + k230 + 6

c31 + Ax210 + Ax211 + 5x212 + 6x213 + 8x220 + 8x221 + 4x222 + 9x223 + k231 + 7

c32 + 7x210 + 8x211 + 8x212 + 2x213 + Dx220 + Cx221 + Cx222 + 3x223 + k232 + 6

c33 + 4x210 + 6x211 + Cx212 + Cx213 + 5x220 + Ex221 + Fx222 + Fx223 + k233 + 7

Key Schedule Conjugacy Relations

k2
000 + k001 k2

100 + k101 k2
200 + k201

k2
001 + k002 k2

101 + k102 k2
201 + k202

k2
002 + k003 k2

102 + k103 k2
202 + k203

k2
003 + k000 k2

103 + k100 k2
203 + k200

k2
010 + k011 k2

110 + k111 k2
210 + k211

k2
011 + k012 k2

111 + k112 k2
211 + k212

k2
012 + k013 k2

112 + k113 k2
212 + k213

k2
013 + k010 k2

113 + k110 k2
213 + k210

k2
020 + k021 k2

120 + k121 k2
220 + k221

k2
021 + k022 k2

121 + k122 k2
221 + k222

k2
022 + k023 k2

122 + k123 k2
222 + k223

k2
023 + k020 k2

123 + k120 k2
223 + k220

k2
030 + k031 k2

130 + k131 k2
230 + k231

k2
031 + k032 k2

131 + k132 k2
231 + k232

k2
032 + k033 k2

132 + k133 k2
232 + k233

k2
033 + k030 k2

133 + k130 k2
233 + k230
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Key Schedule Inversion and Conjugacy Relations

k030s000 + 1 s2
000 + s001 k130s100 + 1 s2

100 + s101

k031s001 + 1 s2
001 + s002 k131s101 + 1 s2

101 + s102

k032s002 + 1 s2
002 + s003 k132s102 + 1 s2

102 + s103

k033s003 + 1 s2
003 + s000 k133s103 + 1 s2

103 + s100

k020s010 + 1 s2
010 + s011 k120s110 + 1 s2

110 + s111

k021s011 + 1 s2
011 + s012 k121s111 + 1 s2

111 + s112

k022s012 + 1 s2
012 + s013 k122s112 + 1 s2

112 + s113

k023s013 + 1 s2
013 + s010 k023s113 + 1 s2

113 + s110

Key Schedule Diffusion Relations: Round 1

k100 + k000 +5s000 + 1s001 + Cs002 + 5s003 + 7

k101 + k001 +2s000 + 2s001 + 1s002 + Fs003 + 6

k102 + k002 +As000 + 4s001 + 4s002 + 1s003 + 7

k103 + k003 +1s000 + 8s001 + 3s002 + 3s003 + 6

k110 + k010 +5s010 + 1s011 + Cs012 + 5s013 + 6

k111 + k011 +2s010 + 2s011 + 1s012 + Fs013 + 7

k112 + k012 +As010 + 4s011 + 4s012 + 1s013 + 6

k113 + k013 +1s010 + 8s011 + 3s012 + 3s013 + 7

k120 + k020 + k000 +5s000 + 1s001 + Cs002 + 5s003 + 7

k121 + k021 + k001 +2s000 + 2s001 + 1s002 + Fs003 + 6

k122 + k022 + k002 +As000 + 4s001 + 4s002 + 1s003 + 7

k123 + k023 + k003 +1s000 + 8s001 + 3s002 + 3s003 + 6

k130 + k030 + k010 +5s010 + 1s011 + Cs012 + 5s013 + 6

k131 + k031 + k011 +2s010 + 2s011 + 1s012 + Fs013 + 7

k132 + k032 + k012 +As010 + 4s011 + 4s012 + 1s013 + 6

k133 + k033 + k013 +1s010 + 8s011 + 3s012 + 3s013 + 7

Key Schedule Diffusion Relations: Round 2

k200 + k100 +5s100 + 1s101 + Cs102 + 5s103 + 4

k201 + k101 +2s100 + 2s101 + 1s102 + Fs103 + 3

k202 + k102 +As100 + 4s101 + 4s102 + 1s103 + 5

k203 + k103 +1s100 + 8s101 + 3s102 + 3s103 + 2

k210 + k110 +5s110 + 1s111 + Cs112 + 5s113 + 6

k211 + k111 +2s110 + 2s111 + 1s112 + Fs113 + 7

k212 + k112 +As110 + 4s111 + 4s112 + 1s113 + 6

k213 + k113 +1s110 + 8s111 + 3s112 + 3s113 + 7

k220 + k120 + k100 +5s100 + 1s101 + Cs102 + 5s103 + 4

k221 + k121 + k101 +2s100 + 2s101 + 1s102 + Fs103 + 3

k222 + k122 + k102 +As100 + 4s101 + 4s102 + 1s103 + 5

k223 + k123 + k103 +1s100 + 8s101 + 3s102 + 3s103 + 2

k230 + k130 + k110 +5s110 + 1s111 + Cs112 + 5s113 + 6

k231 + k131 + k111 +2s110 + 2s111 + 1s112 + Fs113 + 7

k232 + k132 + k112 +As110 + 4s111 + 4s112 + 1s113 + 6

k233 + k133 + k113 +1s110 + 8s111 + 3s112 + 3s113 + 7
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Abstract. The need of true random number generators for many pur-
poses (ranging from applications in cryptography and stochastic simu-
lation, to search heuristics and game playing) is increasing every day.
Many sources of randomness possess the property of stationarity. How-
ever, while a biased die may be a good source of entropy, many appli-
cations require input in the form of unbiased bits, rather than biased
ones. In this paper, we present a new technique for simulating fair coin
flips using a biased, stationary source of randomness. Moreover, the same
technique can also be used to improve some of the properties of pseudo
random number generators. In particular, an improved pseudo random
number generator has almost unmeasurable period, uniform distribution
of the letters, pairs of letters, triples of letters, and so on, and passes
many statistical tests of randomness. Our algorithm for simulating fair
coin flips using a biased, stationary source of randomness (or for improv-
ing the properties of pseudo random number generators) is designed by
using quasigroup string transformations and its properties are mathe-
matically provable. It is very flexible, the input/output strings can be
of 2-bits letters, 4-bits letters, bytes, 2-bytes letters, and so on. It is of
linear complexity and it needs less than 1Kb memory space in its 2-bits
and 4-bits implementations, hence it is suitable for embedded systems
as well.

1 Introduction

Random number generators (RNGs) are useful in every scientific area which uses
Monte Carlo methods. It is difficult to imagine a scientific area where Monte
Carlo methods and RNGs are not used. Extremely important is the application
of RNGs in cryptography for generation of cryptographic keys, and random ini-
tialization of certain variables in cryptographic protocols. Countless applications
in cryptography, stochastic simulation, search heuristics, and game playing rely
on the use of sequences of random numbers.
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The choice of the RNG for a specific application depends on the requirements
specific to the given application. If the ability to regenerate the random sequence
is of crucial significance such as debugging simulations, or the randomness re-
quirements are not very stringent (flying through space on your screen saver), or
the hardware generation costs are unjustified, then one should resort to pseudo-
random number generators (PRNGs). PRNGs are algorithms implemented on
finite-state machines and are capable of generating sequences of numbers which
appear random-like from many aspects. Though they are necessarily periodic
(“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin”, John von Neumann), their periods are very long, they
pass many statistical tests and can be easily implemented with simple and fast
software routines.

It is widely accepted that the core of any RNG must be an intrinsically
random physical process. So, it is no surprise that the proposals and implemen-
tations of RNGs range from tossing a coin, throwing a dice, drawing from a urn,
drawing from a deck of cards and spinning a roulette to measuring thermal noise
from a resistor and shot noise from a Zener diode or a vacuum tube, measur-
ing radioactive decay from a radioactive source, integrating dark current from
a metal insulator semiconductor capacitor, detecting locations of photoevents,
and sampling a stable high-frequency oscillator with an unstable low-frequency
clock. Some of the sources of randomness, such as radioactive sources [1] and
quantum-mechanical sources [2], may yield data from probability distributions
that are stationary. Therefore, the output of these sources does not change over
time and does not depend on previous outputs. However, even if a source is
stationary, it generally has a bias. In other words, the source does not give un-
biased bits as direct output. It is therefore quite important to be able to extract
unbiased bits efficiently from a stationary source with unknown bias.

Suppose that a reading obtained from a stationary source of randomness can
be equal to any one of m different values, but that the probability of obtaining
any one of these values is unknown and in general not equal to 1/m. In other
words, we assume that the source may be loaded. Our aim in this paper is to
simulate unbiased coin flips using a biased source.

Previous Work – There are several references to the problem of simulating
unbiased physical sources of randomness. Von Neumann [3] described the fol-
lowing method; flip the biased coin twice: if it comes up HT, output an H, if
it comes up TH, output a T, otherwise, start over. This method will simulate
the output of an unbiased coin irrespective of the bias of the coin used in the
simulation. Elias [4] proposed a method of extracting unbiased bits from biased
Markov chains. Stout and Warren [5] and Juels et. al. [6] presented new exten-
sions of the technique of von Neumann. Stout and Warren suggested a method
for simulating a fixed number of fair coin flips using as few rolls of a biased die
as possible, while the authors of [6] proposed an algorithm for extracting, given
a fixed number of rolls of a biased die, as many fair coin flips as possible. The
general characteristics of the methods for simulating unbiased physical sources
of randomness are: (i) all of them do not use each bit of information generated
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by the source, (ii) some of the methods can be implemented in computationally
effective way, but for some of them corresponding algorithms are of exponential
nature and then approximations should be involved, and (iii) for some of them
mathematical proofs are supplied for their properties.

Our Work – In this paper we propose a method for simulating unbiased
physical sources of randomness which is based on the quasigroup string trans-
formations and some of their provable properties. Our method uses each bit of
information produced by a discrete source of randomness. Moreover, our method
is capable of producing a random number sequence from a very biased station-
ary source (for example, from a source that produces 0 with probability 1/1000
and 1 with probability 999/1000). The complexity of our algorithm is linear, i.e.
an output string of length n will be produced from an input string of length
n with complexity O(n). Our algorithm is highly parallel. This means there
exist computationally very effective software and hardware implementations of
the method. Our algorithm is also very flexible: the same design can be used
for strings whose letters consists of 2-bits, 4-bits, bytes, 2-bytes, and generally it
can be designed for an arbitrary n-bit letters alphabet (n ≥ 2). The method pro-
posed in this paper can also be used to improve the quality of existing PRNGs
so that they pass many statistical tests and their periods can be arbitrary large
numbers. Since many of the weak PRNGs are still in use because of the simplic-
ity of their design and the speed of producing pseudo random strings (although
of bad quality), our method in fact can improve the quality of these PRNGs
very effectively.

The paper is organized as follows. Needed definitions and properties of quasi-
groups and quasigroup string transformations are given in Section 2. The algo-
rithm for simulating unbiased physical sources of randomness (or for improving
PRNGs) is presented in Section 3. In this section we also present some numerical
results concerning our method, while the proofs of the main theorems are given
in the appendicitis. In Section 4 we close our paper with conclusion.

2 Quasigroup String Transformations

Here we give a brief overview of quasigroups, quasigroup operations and quasi-
group string transformations (more detailed explanation the reader can find in
[7], [8]).

A quasigroup is a groupoid (Q, ∗) satisfying the laws

(∀u, v ∈ Q)(∃x, y ∈ Q)(u ∗ x = v, y ∗ u = v),

x ∗ y = x ∗ z =⇒ y = z, y ∗ x = z ∗ x =⇒ y = z.

Hence, a quasigroup satisfies the cancelation laws and the equations a ∗ x =
b, y∗a = b have unique solutions x, y for each a, b ∈ Q. If (Q, ∗) is a quasigroup,
then ∗ is called a quasigroup operation.

Here we consider only finite quasigroups, i.e Q is a finite set. Closely related
combinatorial structures to finite quasigroups are the so called Latin squares: a
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Latin square L on a finite set Q (with cardinality |Q| = s) is an s × s-matrix
with elements from Q such that each row and each column of the matrix is a
permutation of Q. To any finite quasigroup (Q, ∗) given by its multiplication
table it is associated a Latin square L, consisting of the matrix formed by the
main body of the table, and each Latin square L on a set Q define a quasigroup
(Q, ∗).

Given a quasigroup (Q, ∗) five new operations, so called parastrophes or ad-
joint operations, can be derived from the operation ∗. We will need only the
following two, denoted by \ and /, and defined by:

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (1)

Then the algebra (Q, ∗, \, /) satisfies the identities

x \ (x ∗ y) = y, x ∗ (x \ y) = y, (x ∗ y)/y = x, (x/y) ∗ y = x (2)

and (Q, \), (Q, /) are quasigroups too.
Several quasigroup string transformations can be defined and those of interest

of us will be explained bellow. Consider an alphabet (i.e. a finite set) A, and
denote by A+ the set of all nonempty words (i.e. finite strings) formed by the
elements of A. The elements of A+ will be denoted by a1a2 . . . an rather than
(a1, a2, . . . , an), where ai ∈ A. Let ∗ be a quasigroup operation on the set A.
For each l ∈ A we define two functions el,∗, e′l,∗ : A+ −→ A+ as follows. Let
ai ∈ A, α = a1a2 . . . an. Then

el,∗(α) = b1 . . . bn ⇐⇒ bi+1 = bi ∗ ai+1 (3)

e′l,∗(α) = b1 . . . bn ⇐⇒ bi+1 = ai+1 ∗ bi (4)

for each i = 0, 1, . . . , n − 1, where b0 = l. The functions el,∗ and e′l,∗ are called
e- and e′-transformations of A+ based on the operation ∗ with leader l. Graph-
ical representations of the e- and e′-transformations are shown on Figure 1 and
Figure 2.

Example 1. Take A = {0, 1, 2, 3} and let the quasigroup (A, ∗) be given by the

multiplication scheme

∗ 0 1 2 3

0 2 1 0 3

1 3 0 1 2

2 1 2 3 0

3 0 3 2 1

a1 a2 . . . an−1 an

l = b0 b1 b2 . . . bn−1 bn
�

��	
�

��	
�

��	
�

��	
�

��	� � � �

Fig. 1. Graphical representation of an e-transformation
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a1 a2 . . . an−1 an

l = b0 b1 b2 . . . bn−1 bn

�
��


�
��


�
��


�
��


�
��
� � � �

Fig. 2. Graphical representation of an e′-transformation

Consider the string α = 1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0
and choose the leader 0. Then we have the following transformed strings

e0,∗(α) = 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0,
e′0,∗(α) = 3 3 0 3 3 3 3 3 3 3 3 3 3 2 1 2 1 1 2 3 3 2 0 3 3 1 1 1.

Four consecutive applications of these transformations are presented below:

1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0 = α
0 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0 = e0,∗(α)
0 1 2 3 2 2 0 2 3 3 1 3 2 2 1 0 1 1 2 2 2 0 3 0 1 2 2 0 2 = e0,∗

2(α)
0 1 1 2 3 2 1 1 2 0 1 2 3 2 2 1 0 1 1 1 1 3 1 3 3 2 3 0 0 = e0,∗

3(α)
0 1 0 0 3 2 2 2 3 0 1 1 2 3 2 2 1 0 1 0 1 2 2 0 3 2 0 2 1 = e0,∗

4(α)

1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0 = α
0 3 3 0 3 3 3 3 3 3 3 3 3 3 2 1 2 1 1 2 3 3 2 0 3 3 1 1 1 = e′0,∗(α)
0 0 0 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 1 2 2 2 3 3 1 3 2 1 0 = e′0,∗

2(α)
0 2 0 1 2 3 0 1 2 3 0 1 2 3 1 2 2 3 2 3 0 1 3 1 0 0 1 0 2 = e′0,∗

3(α)
0 1 1 0 1 3 3 2 3 1 1 0 1 3 2 3 0 0 1 3 3 2 2 1 1 1 0 2 3 = e′0,∗

4(α)

One can notice that the starting distribution of 0, 1, 2 and 3 in α : 16/28, 7/28,
4/28, 1/28 is changed to 7/28, 7/28, 10/28, 4/28 in e0,∗

4(α) and to 5/28, 10/28,
5/28, 8/28 in e′0,∗

4(α), hence the distributions became more uniform.
Several quasigroup operations can be defined on the set A and let ∗1, ∗2,

. . . , ∗k be a sequence of (not necessarily distinct) such operations. We choose
also leaders l1, l2, . . . , lk ∈ A (not necessarily distinct either), and then the
compositions of mappings

Ek = El1...lk = el1,∗1 ◦ el2,∗2 ◦ · · · ◦ elk,∗k
,

E′
k = E′

l1...lk
= e′l1,∗1

◦ e′l2,∗2
◦ · · · ◦ elk,∗k

,

are said to be E- and E′-transformations of A+ respectively. The functions
Ek and E′

k have many interesting properties, and for our purposes the most
important ones are the following:

Theorem 1. ([8]) The transformations Ek and E′
k are permutations of A+.

Theorem 2. ([8]) Consider an arbitrary string α = a1a2 . . . an ∈ A+, where
ai ∈ A, and let β = Ek(α), β′ = E′

k(α). If n is large enough integer then, for
each l : 1 ≤ l ≤ k, the distribution of substrings of β and β′ of length l is
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uniform. (We note that for l > k the distribution of substrings of β and β′ of
length l may not be uniform.)

We say that a string α = a1a2 . . . an ∈ A+, where ai ∈ A, has a period p if
p is the smallest positive integer such that ai+1ai+2 . . . ai+p = ai+p+1ai+p+2 . . .
. . . ai+2p for each i ≥ 0. The following property holds:

Theorem 3. ([9]) Let α = a1a2 . . . an ∈ A+, ai ∈ A, and let β = Ek(α), β′ =
E′

k(α), where Ek = Eaa...a, E′
k = E′

aa...a, a ∈ A and a ∗ a �= a. Then the periods
of the strings β and β′ are increasing at least linearly by k.

We should note that the increasing of the periods depends of the number of
quasigroup transformations k, and for some of them it is exponential, i.e. if α
has a period p, then β = Ek(α) and β′ = E′

k(α) may have periods greater than
p 2c k, where c is some constant. We will discuss this in more details in the next
section. In what follows we will usually use only E-transformations, since the
results will hold for E′-transformations by symmetry.

Theorem 1 is easy to prove (and one can find the proof in [8]). The proofs
of Theorem 2 and Theorem 3 are given in the Appendix I and the Appendix II,
respectively.

3 Description of the Algorithms

Assume that we have a discrete biased stationary source of randomness which
produces strings from A+, i.e. the alphabet of source is A, where

A = {a0, a1, . . . , as−1}

is a finite alphabet. (However, we may also think that strings in A+ are produced
by a PRNG.)

Now we define two algorithms for simulating unbiased physical sources of
randomness (or for improving PRNGs), based on E- and E′-transformations
accordingly. We call them an E − algorithm and an E′ − algorithm. In these
algorithms we use several internal and temporal variables b, L1, . . . , Ln. The
input of the algorithm is the order of the quasigroup s, a quasigroup (A, ∗) of
order s, a fixed element l ∈ A (the leader), an integer k giving the number
of applications of the transformations el,∗ and e′l,∗ and a biased random string
b0, b1, b2, b3, . . . . The output is an unbiased random string.

The performance of the algorithms is based on Theorems 1, 2 and 3. By The-
orem 1 we have that E − algorithm and E′ − algorithm are injective, meaning
that different input string produces different output string. Theorem 2 guaran-
tees that the algorithms generate unbiased output random strings. Theorem 3
guarantees that if the biased source has period p (such as some Pseudo Random
Number Generator) the algorithm will generate unbiased output with longer
period.

Both E − algorithm and E′ − algorithm can also be used to improve the
properties of PRNGs. For example, for suitable choice of the quasigroup and
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suitable choice of the parameter s, Theorem 3 shows that the period of the output
pseudo random string can be made arbitrary large. In addition, we have checked
the quality of output pseudo random strings by using available statistical tests
(such as Diehard [10] and those suggested by NIST [11]) for different quasigroups,
leaders, and different values of n: in all these cases the pseudo strings passed all
of the tests.

E-algorithm
Phase I. Initialization
1. Choose a positive integer s ≥ 4;
2. Choose a quasigroup (A, ∗) of order s;
3. Set a positive integer k;
4. Set a leader l, a fixed element of A such that l ∗ l �= l;
Phase II. Transformations of the random

string b0b1b2b3 . . . , bj ∈ A
5. For i = 1 to k do Li ← l;
6. j ← 0;
7. do

b← bj ;
L1 ← L1 ∗ b;
For i = 2 to k do Li ← Li ∗ Li−1;
Output: Lk;
j ← j + 1;

loop;

The E′ − algorithm differs of the E − algorithm only in step 7:

E′ − algorithm
7′. do

b← bj ;
L1 ← b ∗ L1;
For i = 2 to k do Li ← Li−1 ∗ Li;
Output: Lk;
j ← j + 1;

loop;

Example 2. The PRNG used in GNU C v2.03 do not passed all of the
statistical tests in the Diehard Battery v0.2 beta [10], but the improved PRNG
passed all of them after only one application (k = 1) of an e-transformation
performed by a quasigroup of order 256. The results are given in the next two
screen dumps.

***** TEST SUMMARY FOR GNU C (v2.03) PRNG *****
All p-values:

0.2929,0.8731,0.9113,0.8755,0.4637,0.5503,0.9435,0.7618,0.9990,0.0106,1.0000,0.0430,0.0680,

1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,

1.0000,1.0000,1.0000,0.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,
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1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,0.2009,0.0949,0.1939,0.0944,0.2514,0.3419,

0.5714,0.2256,0.1484,0.7394,0.0562,0.3314,0.2559,0.5677,0.3061,0.4763,0.8185,0.1571,0.2072,

0.5667,0.7800,0.6428,0.7636,0.1529,0.9541,0.8689,0.1558,0.6235,0.5275,0.6316,0.7697,0.7181,

0.7921,0.4110,0.3050,0.8859,0.4783,0.3283,0.4073,0.2646,0.0929,0.6029,0.4634,0.8462,0.3777,

0.2385,0.6137,0.1815,0.4001,0.1116,0.2328,0.0544,0.4320,0.0000,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0003,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,1.0000,0.0013,0.0000,0.0000,

0.0000,0.0000,0.0000,0.0000,1.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,1.0000,

0.0003,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,

0.0753,0.0010,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0233,0.0585,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0000,0.2195,0.0321,0.0000,0.0000,0.9948,0.0006,0.0000,0.0000,0.0688,0.5102,

0.6649,0.1254,0.2967,0.1218,0.8199,0.7125,0.6873,0.1663,0.7150,0.7275,0.9035,0.1946,0.7261,

0.7243,0.1083,0.4266,0.7664,0.8384,0.7317,0.8340,0.3155,0.0987,0.7286,0.6645,0.9121,0.0550,

0.6923,0.1928,0.7236,0.0159,0.4636,0.2764,0.2325,0.3406,0.3746,0.1208,0.8145,0.3693,0.7426,

0.6272,0.6139,0.4957,0.3623,0.4929,0.3628,0.5266,0.2252,0.7948,0.7327,0.2732,0.6895,0.2325,

0.2303,0.1190,0.8802,0.0377,0.6887,0.4175,0.0803,0.3687,0.7010,0.7425,0.1003,0.0400,0.5055,

0.9488,0.3209,0.5965,0.0676,0.0021,0.2337,0.5204,0.5343,0.0630,0.2008,0.6496,0.4157,0.0559,

0.9746,0.1388,0.4657,0.5793,0.6455,0.8441,0.5248,0.7962,0.8870

Overall p-value after applying KStest on 269 p-values = 0.000000

*** TEST SUMMARY FOR GNU C v2.03 + QUASIGROUP PRNG IMPROVER ***
All p-values:

0.5804,0.3010,0.1509,0.5027,0.3103,0.5479,0.3730,0.9342,0.4373,0.5079,0.0089,0.3715,0.3221,

0.0584,0.1884,0.1148,0.0662,0.8664,0.5070,0.7752,0.1939,0.9568,0.4948,0.1114,0.2042,0.4190,

0.4883,0.4537,0.0281,0.0503,0.0346,0.6085,0.1596,0.1545,0.0855,0.5665,0.0941,0.7693,0.0288,

0.1372,0.8399,0.0320,0.6930,0.3440,0.9842,0.9975,0.1354,0.8776,0.1919,0.2584,0.6437,0.1995,

0.2095,0.3298,0.5180,0.8136,0.7294,0.7560,0.0458,0.6285,0.1775,0.1546,0.0397,0.5135,0.0938,

0.6544,0.9673,0.8787,0.9520,0.8339,0.4397,0.3687,0.0044,0.7146,0.9782,0.7440,0.3042,0.3388,

0.8465,0.7123,0.8752,0.8775,0.7552,0.5711,0.3768,0.1390,0.9870,0.9444,0.6101,0.1090,0.2032,

0.8538,0.6871,0.8785,0.9159,0.4128,0.4513,0.1512,0.8808,0.7079,0.2278,0.1400,0.6461,0.4082,

0.3353,0.1064,0.6739,0.2066,0.5119,0.0558,0.5748,0.5064,0.8982,0.6422,0.7512,0.8633,0.1712,

0.4625,0.0843,0.0903,0.7641,0.6253,0.8523,0.7768,0.8041,0.5360,0.0826,0.0378,0.8710,0.4901,

0.7994,0.7748,0.8403,0.9886,0.1373,0.7082,0.8860,0.9595,0.2671,0.0038,0.7572,0.8403,0.7410,

0.5615,0.6181,0.1257,0.5960,0.2432,0.8302,0.1981,0.7764,0.2109,0.2109,0.6620,0.8938,0.0052,

0.8116,0.5196,0.0836,0.4144,0.2466,0.3298,0.8724,0.9837,0.8748,0.0930,0.5055,0.6511,0.3569,

0.2832,0.4029,0.9290,0.3470,0.6598,0.4796,0.3758,0.6077,0.4213,0.1886,0.1500,0.3341,0.0594,

0.0663,0.0946,0.8279,0.2451,0.2969,0.9297,0.0739,0.4839,0.1307,0.4527,0.0272,0.9913,0.0570,

0.0791,0.9028,0.4706,0.4020,0.7592,0.4105,0.7107,0.5505,0.7223,0.3233,0.3037,0.9924,0.5545,

0.7944,0.0854,0.5545,0.4455,0.4636,0.2613,0.2467,0.9586,0.4275,0.8175,0.5793,0.1189,0.7109,

0.2115,0.8156,0.8468,0.9429,0.8382,0.1463,0.4212,0.6948,0.4816,0.3454,0.2114,0.3493,0.1389,

0.3448,0.0413,0.2422,0.6363,0.2340,0.8404,0.0065,0.7319,0.8781,0.2751,0.5197,0.4105,0.7121,

0.0832,0.1503,0.1148,0.3008,0.0121,0.0029,0.4423,0.6239,0.0651,0.3838,0.0165,0.2770,0.0475,

0.2074,0.0004,0.7962,0.4750,0.4839,0.9152,0.1681,0.0822,0.0518

Overall p-value after applying KStest on 269 p-values = 0.018449
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Example 3. In this example as a source we used a highly biased source
of randomness where 0 has frequency of 1

1000 and 1 has frequency of 999
1000 . We

applied several consecutive e-transformation with a random quasigroup of order
256, monitoring the results from Diehard battery. After the fifth e-transformation
we obtained the following results:

** TEST SUMMARY - HIGHLY BIASED SOURCE & FIVE e-Transformations **
All p-values:

0.9854,0.8330,0.4064,0.9570,0.6597,0.5447,0.5796,0.5885,0.3482,0.1359,0.1788,0.1194,0.8588,

0.3455,0.6627,0.3610,0.5622,0.9905,0.8430,0.1259,0.0799,0.9061,0.8378,0.4313,0.7249,0.4505,

0.9192,0.1007,0.2785,0.9099,0.0422,0.7891,0.2681,0.4452,0.9389,0.5081,0.7621,0.0914,0.0066,

0.6915,0.8662,0.7176,0.5658,0.7957,0.0590,0.4287,0.5772,0.4809,0.9891,0.1439,0.0000,0.6089,

0.2351,0.2533,0.0061,0.0171,0.6894,0.5279,0.9075,0.7313,0.6401,0.8004,0.1155,0.4374,0.8159,

0.9895,0.4989,0.5433,0.6915,0.9944,0.5661,0.7771,0.5461,0.8875,0.6586,0.0340,0.4701,0.9087,

0.1412,0.4037,0.7326,0.1809,0.3157,0.0573,0.3875,0.4210,0.9403,0.9805,0.2278,0.7588,0.2840,

0.5109,0.4997,0.5554,0.1334,0.5332,0.3025,0.2139,0.4366,0.2514,0.5530,0.7288,0.7055,0.3316,

0.0870,0.0853,0.6714,0.7704,0.9582,0.8772,0.2448,0.6751,0.0658,0.1317,0.6096,0.8317,0.0234,

0.6689,0.3353,0.5257,0.9411,0.7219,0.5881,0.1103,0.5709,0.3836,0.4470,0.6104,0.3517,0.5841,

0.1097,0.0597,0.6784,0.4045,0.6929,0.5104,0.5828,0.8125,0.5481,0.0264,0.3244,0.6821,0.8731,

0.8773,0.7624,0.7748,0.7128,0.4698,0.1195,0.0842,0.3780,0.8346,0.4562,0.5745,0.9541,0.3341,

0.0480,0.0753,0.3713,0.9637,0.9479,0.2401,0.8256,0.8368,0.2636,0.8346,0.9236,0.1218,0.3859,

0.8203,0.6748,0.5384,0.6346,0.8667,0.0006,0.6346,0.3780,0.8693,0.1459,0.7995,0.0483,0.7434,

0.2872,0.2546,0.2167,0.4233,0.8091,0.0451,0.2333,0.3243,0.8374,0.0915,0.3251,0.3731,0.5076,

0.8991,0.0931,0.9258,0.2831,0.8281,0.8386,0.0906,0.0979,0.5441,0.7129,0.8298,0.8427,0.8732,

0.7236,0.9397,0.5545,0.9397,0.9544,0.8312,0.2325,0.8424,0.2325,0.0176,0.8621,0.0401,0.7033,

0.2288,0.2786,0.6751,0.3424,0.5295,0.9344,0.7879,0.9744,0.0259,0.0487,0.1014,0.8589,0.8655,

0.1008,0.8204,0.5564,0.7432,0.8604,0.2008,0.2081,0.4452,0.2352,0.5092,0.4250,0.6055,0.5262,

0.1459,0.0838,0.2735,0.9764,0.6419,0.7941,0.2412,0.6055,0.9725,0.1075,0.2903,0.5552,0.1643,

0.0813,0.8206,0.0742,0.5889,0.3077,0.4771,0.7677,0.8252,0.3248

Overall p-value after applying KStest on 269 p-values = 0.373599

We now discuss the choice of the quasigroup, and the parameters s and k.
If E − algorithm and E′ − algorithm are used for simulating unbiased physical
sources of randomness, then the quasigroup can be chosen to be arbitrary (we
recommend 4 ≤ s ≤ 256) while k depends on s and how biased is the source of
randomness. The number k should be chosen by the rule ‘for smaller s larger k’
and its choice depends on the source. For example, if a source is highly biased (it
produces 0 with probability 1/1000 and 1 with probability 999/1000), we suggest
the following rule (derived from our numerous numerical experiments): ‘ks ≥ 512
and k > 8’. In fact, the number s is in a way predefined by the source. Let the
alphabet of the source consists of all 8-bits letters. Then we have the following
choices of A: A = {0, 1, 2, 3}, A = {0, 1, 2, . . . , 7}, A = {0, 1, . . . , 15}, A =
{0, 1, . . . , 31}, A = {0, 1, . . . , 63}, A = {0, 1, 2, . . . , 127}, A = {0, 1, 2, . . . , 255}.
Thus, the output string of the source is considered as string of bits and then the
bits are grouped in two, three, and so on. We can consider in this case alphabets
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with two–byte letters, three–byte letters etc., but quasigroups of orders 65536 or
higher need a lot of storage memory and generally the computations are slower,
and we do not recommend to be used.

If E − algorithm and E′ − algorithm are used for improving some of the
properties of PRNGs, then the quasigroup should be exponential. Our theoret-
ical results ([8], [12], [13]) and numerical experiments indicate that the class
of finite quasigroups can be separated into two disjoint subclasses: the class of
linear quasigroups and the class of exponential quasigroups. There are several
characteristics that separate these two classes and for our purposes this one is
important. Given a finite set Q = {q0, q1, . . . , qs−1}, let (Q, ∗) be a quasigroup
and let α = q0q1 . . . qp−1q0q1 . . . qp−1q0q1 . . . qp−1 . . . be an enough long string
of period p. Let

αk = el,∗ . . . el,∗︸ ︷︷ ︸
k−times

(α).

If the period of the string αk is a linear function of k, then the quasigroup
(Q, ∗) is said to be linear. On the other hand, if the period of the string αk is
an exponential function 2c k (where c is some constant), then the quasigroup
(Q, ∗) is said to be exponential. The number c is called the period growth of the
exponential quasigroup (Q, ∗).

The numerical experiments presented in [14] show that the percentage of
linear quasigroups decreases when the order of the quasigroup increases. Fur-
thermore, the percentage of ‘bad’ quasigroups, i.e. linear quasigroups and expo-
nential quasigroup with period growth c < 2, is decreasing exponentially by the
order of the quasigroups. For quasigroups of order 4, 5, 6, 7, 8, 9 and 10 the
results are summarized in Table 1. We stress that the above results are not quite
precise (except for the quasigroups of order 4, where complete classification is
obtained in [15]), since the conclusion is made when only 7 e-transformation
were applied. Namely, it can happen that some of quasigroups, after more than
7 applications, will have period growth c ≥ 2.

We made the following experiment over 106 randomly chosen quasigroups of
order 16. We counted the period growth after 5 applications of el,∗- transforma-
tions of each of the quasigroups on the following periodical strings with period
16: 0, 1, 2, . . . , 14, 15, 0, 1, 2, . . . , 14, 15, . . . , 0, 1, 2, . . . , 14, 15, . . . . The value of the
leader l did not affect the results. The obtained distribution of the period growth
is presented on the Table 2. It can be seen from Table 2 that 907 quasigroups have
period growth c < 2 after 5 applications of the e-transformation. We counted
the period growth after 6 applications of each of those quasigroups and we ob-
tained that only 15 of them have period growth c < 2. After 7 applications,
only one quasigroup has period growth c < 2, but after 10 applications of e-

Table 1. Percentage of ‘bad’ quasigroups of order 4 – 10

Order of the quasigroup 4 5 6 7 8 9 10

Percentage of ‘bad’ quasigroups 34.7 4.1 1.6 0.6 0.38 0.25 0.15
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Table 2. Period growth of 106 randomly chosen quasigroups of order 16 after 5
applications of e-transformations

Number of Number of
Value of c quasigroups with Value of c quasigroups with

period growth 2c k period growth 2c k

0.00 ≤ c < 0.25 4 2.00 ≤ c < 2.25 79834

0.25 ≤ c < 0.50 23 2.25 ≤ c < 2.50 128836

0.50 ≤ c < 0.75 194 2.50 ≤ c < 2.75 174974

0.75 ≤ c < 1.00 686 2.75 ≤ c < 3.00 199040

1.00 ≤ c < 1.25 2517 3.00 ≤ c < 3.25 175848

1.25 ≤ c < 1.50 7918 3.25 ≤ c < 3.50 119279

1.50 ≤ c < 1.75 18530 3.50 ≤ c < 3.75 45103

1.75 ≤ c < 2.00 42687 3.75 ≤ c ≤ 4.00 4527

transformations, this quasigroup has period growth 2. This experiment shows
that it is not easy to find randomly a linear quasigroup of order 16.

4 Conclusion

We have suggested algorithms based on quasigroup string transformations for
simulating unbiased coin flips using a biased source and for improving the prop-
erties of PRNGs. The performances of the algorithms are obtained from three
theorems. The first theorem shows that the employed quasigroup string trans-
formations are in fact permutations, the second theorem guarantees that the
algorithms generate uniform output strings, while the third theorem proves that
the period of the output pseudo random string can be arbitrary large number.
We note that one have to choose an exponential quasigroup for obtaining better
performances of the algorithms.

The proposed algorithms are very simple, of linear complexity and there are
mathematical proofs of their properties. If quasigroups of order ≤ 16 are used
the algorithms can be implemented in less than 1Kb working memory. Hence,
they can be used in embedded systems as well.

The simplicity of the algorithms allows effective hardware realization. The
initial results about parallel implementation of our algorithms are highly par-
allel and pipelined solution with delay of O(n), where n is the number of e-
transformations [16].

The use of the algorithms for cryptographic purposes (like designs of hash
functions, synchronous, self-synchronizing and totaly asynchronous stream ci-
phers) is considered in several papers ([9], [17], [18], [19]), where it is emphasized
that the employed quasigroups and the leaders of the transformations should be
kept secret and the number n of applied e-transformations should be enough
large. Note that the number of quasigroups of relatively small orders is huge
one (there are 576 quasigroups of order 4, about 1020 of order 8, about 1047 of
order 11 (see [20]), and much more than 10120 of order 16 and much more than
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1058000 of order 256). On the other hand, by using the P. Hall’s algorithm [21]
for choosing a system of different representatives of a family of sets, a suitable
algorithm for generating a random quasigroup of order s can be designed with
complexity O(s3).
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Appendix 1: Proof of Theorem 2

In order to simplify the technicalities in the proof we take that the alphabet A
is {0, . . . , s− 1}, where 0, 1, . . . , s− 1 (s > 1) are integers, and ∗ is a quasigroup
operation on A. We define a sequence od random variables {Yn| n ≥ 1} as
follows. Let us have a probability distribution (q0, q1, . . . , qs−1) of the letters

0,1, . . . , s− 1, such that qi > 0 for each i = 0, 1, . . . , s − 1 and
s−1∑
i=0

qi = 1.

Consider an e-transformation E and let γ = E(β) where β = b1 . . . bk, γ =
c1 . . . ck ∈ A+ (bi, ci ∈ A). We assume that the string β is arbitrarily chosen.
Then by {Ym = i} we denote the random event that the m-th letter in the string
γ is exactly i. The definition of the e-transformation given by(3) implies

P (Ym = j| Ym−1 = jm−1, . . . , Y1 = j1) = P (Ym = j| Ym−1 = jm−1)

since the appearance of the m-th member in γ depends only of the (m − 1)-
th member in γ, and not of the (m − 2)-th,. . . , 1-st ones. So, the sequence
{Ym| m ≥ 1} is a Markov chain, and we refer to it as a quasigroup Markov chain
(qMc). Let pij denote the probability that in the string γ the letter j appears
immediately after the given letter i, i.e.

pij = P (Ym = j| Ym−1 = i), i, j = 0, 1, . . . , s− 1.

The definition of qMc implies that pij does not depend of m, so we have that
qMc is a homogeneous Markov chain. The probabilities pij can be determined
as follows. Let i, j, t ∈ A and let i ∗ t = j be a true equality in the quasigroup
(A, ∗). Then

P (Ym = j| Ym−1 = i) = qt,

since the equation i ∗x = j has a unique solution for the unknown x. So, pij > 0
for each i, j = 0, . . . , s−1, i.e. the transition matrix Π = (pij) of qMc is regular.

Clearly, as in any Markov chain,
s−1∑
j=0

pij = 1. But for the qMc we also have

s−1∑
i=0

pij =
∑
t∈A

qt = 1
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i.e. the transition matrix Π of a qMc is doubly stochastic.
As we have shown above, the transition matrix Π is regular and doubly

stochastic. The regularity of Π implies that there is a unique fixed probabil-
ity vector p = (p0, . . . , ps−1) such that pΠ = p, and all components of p are
positive. Also, since Π is a doubly stochastic matrix too, one can check that(

1
s
,
1
s
, . . . ,

1
s

)
is a solution of pΠ = p. So, pi =

1
s

(i = 0, . . . , s− 1). In such a

way we have the following Lemma:

Lemma 1. Let β = b1b2 . . . bk ∈ A+ and γ = E(1)(β). Then the probability
of the appearance of a letter i at the m-th place of the string γ = c1 . . . ck is

approximately
1
s
, for each i ∈ A and each m = 1, 2, . . . , k.

Lemma 1 tells us that the distribution of the letters in the string γ = E(β)
obtained from a sufficiently large string β by a quasigroup string permutation
is uniform. We proceed the discussion by considering the distributions of the
substrings ci+1 . . . ci+l of the string γ = En(β) (β = b1b2 . . . bk ∈ A+), where
l ≥ 1 is fixed and i ∈ {0, 1, . . . , k − l}. As usual, we say that ci+1 . . . ci+l is a
substring of γ of length l. Define a sequence {Z(n)

m | m ≥ 1} of random variables
by

Z
(n)
m = t ⇐⇒

⎧⎪⎨⎪⎩
Y

(n)
m = i

(n)
m , Y

(n)
m+1 = i

(n)
m+1, . . . , Y

(n)
m+l−1 = i

(n)
m+l−1,

t = i
(n)
m sl−1 + i

(n)
m+1s

l−2 + · · ·+ i
(n)
m+l−2s + i

(n)
m+l−1

where here and further on the superscripts (n) denote the fact that we are
considering substrings of a string γ = i(n)

1 i(n)
2 . . . i(n)

k obtained from a string β by
transformations of kind en. Thus, Y

(n)
m is just the random variable Ym defined

as before. The mapping

(i(n)
m , i(n)

m+1, . . . , i
(n)
m+l−1) �→ i(n)

m sl−1 + i
(n)
m+1s

l−2 + · · ·+ i
(n)
m+l−2s + i

(n)
m+l−1

is a bijection from Al onto {0, 1, . . . , sl − 1}, so the sequence {Z(n)
m | m ≥ 1} is

well defined. The sequence {Z(n)
m | m ≥ 1} is also a Markov chain (n-qMc), since

the appearance of a substring i(n)
m i(n)

m+1 . . . i(n)
m+l−1 of l consecutive symbols in γ

depends only of the preceding substring i(n)
m−1i

(n)
m i(n)

m+1 . . . i(n)
m+l−2. Denote by t

and t′ the following numbers:

t = i
(n)
m sl−1 + i

(n)
m+1s

l−2 + · · ·+ i
(n)
m+l−2s + i

(n)
m+l−1,

t′ = i
(n)
m−1s

l−1 + i′
(n)
m sl−2 + · · ·+ i′

(n)
m+l−3s + i′

(n)
m+l−2.

Let pt′t be the probability that in some string γ = E(n)(β), the substring
i(n)
m . . . i(n)

m+l−2i
(n)
m+l−1 of γ (from the m-th to the m + l − 1-th position) appears

(with overlapping) after a given substring i(n)
m−1i

′(n)
m . . . . . . i′(n)

m+l−3i
′(n)
m+l−2 of γ
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(from the m− 1-th to the m + l − 2-th position). Clearly, pt′t = 0 if i(n)
j �= i′(n)

j

for some j ∈ {m,m− 1, . . . , m + l − 2}. In the opposite case (when l − 1 letters
are overlapped) we have:

pt′t = P (Z(n)
m = t | Z

(n)
m−1 = t′)

= P (Y (n)
m = i

(n)
m , . . . , Y

(n)
m+l−1 = i

(n)
m+l−1 | Y

(n)
m−1 = i

(n)
m−1, Y

(n)
m = i

(n)
m , . . .

. . . , Y
(n)
m+l−2 = i

(n)
m+l−2)

= P (∩l−1
j=0(Y

(n)
m+j = i

(n)
m+j) | ∩l−1

j=0 (Y (n)
m+j−1 = i

(n)
m+j−1))

=
P (∩l

j=0(Y
(n)
m+j−1 = i

(n)
m+j−1))

P (∩l−1
j=0(Y

(n)
m+j−1 = i

(n)
m+j−1))

=
P (∩l−1

j=0(Y
(n)
m+j = i

(n)
m+j)) | Y

(n)
m−1 = i

(n)
m−1)

P (∩l−2
j=0(Y

(n)
m+j = i

(n)
m+j)) | Y

(n)
m−1 = i

(n)
m−1)

(5)
By using an induction of the numbers n of quasigroup transformations we will
prove the Theorem 2, i.e we will prove the following version of it:

Let 1 ≤ l ≤ n, β = b1b2 . . . bk ∈ A+ and γ = E(n)(β). Then the distribution
of substrings of γ of length l is uniform.

Recall the notation A = {0, . . . , s− 1}. For n = 1 we have the Lemma 1,
and let n = r + 1, r ≥ 1. By the inductive hypothesis, the distribution of
the substrings of length l for l ≤ r in γ′ = Er(β) is uniform. At first, we
assume l ≤ r and we are considering substrings of length l of γ = Er+1(β) =
i(r+1)
1 . . . i(r+1)

k . We take that ∗1, . . . , ∗r+1 are quasigroup operations on A and
recall that E(r+1) = Er+1 ◦ E(r) = Er+1 ◦ Er ◦ E(r−1) = . . . . Since (A, ∗r+1)
is a quasigroup, the equation i(r+1)

j−1 ∗r+1 x = i(r+1)
j has a unique solution on x,

for each j, 2 ≤ j ≤ k, and we denote it by x = i(r)j . Denote by i(r)1 the solution

of the equation ar+1 ∗r+1 x = i(r+1)
1 , where ar+1 ∈ A is the fixed element

in the definition of Er+1. In such a way, instead of working with substrings
i(r+1)
m i(r+1)

m+1 . . . i(r+1)
m+d of γ, we can consider substrings i(r)m i(r)m+1 . . . i(r)m+d of γ′ =

E(r)(β), for any d, 0 ≤ d ≤ k − m. The uniqueness of the solutions in the
quasigroup equations implies that we have

P (∩d
j=0(Y

(r+1)
m+j = i

(r+1)
m+j )) | Y

(r+1)
m−1 = i

(r+1)
m−1 ) = P (∩d

j=0(Y
(r)
m+j = i

(r)
m+j)) (6)

as well. Here, i
(r+1)
0 = ar+1. Then, by (5) and (6) (for d = l − 1, d = l − 2 and

n = r + 1) we have



178 S. Markovski, D. Gligoroski, and L. Kocarev

pt′t =
P (∩l−1

j=0(Y
(r)
m+j = i

(r)
m+j))

P (∩l−2
j=0(Y

(r)
m+j = i

(r)
m+j))

(7)

where l ≤ r. By the inductive hypothesis we have P (∩l−1
j=0(Y

(r)
m+j = i

(r)
m+j)) =

1
sl

, P (∩l−2
j=0(Y

(r)
m+j = i

(r)
m+j)) =

1
sl−1

, i.e. pt′t =
1
s
. Thus, for the probabilities pt′t

we have

pt′t =

⎧⎪⎪⎨⎪⎪⎩
0 if i′(r+1)

j �= i(r+1)
j for some j = m, . . . , m + l − 2

1
s

if i′(r+1)
j = i(r+1)

j for each j = m, . . . , m + l − 2.

This means that in each column of the sl × sl-matrix of transitions Π of n-qMc

there will be exactly s members equal to
1
s

(those for which i′(r+1)
j = i(r+1)

j , j =

m, . . . , m+ l− 2), the other members will be equal to 0 and then the sum of the
members of each column of Π is equal to 1. Hence, the transition matrix Π is
doubly stochastic. It is a regular matrix too, since each element of the matrix Π l

is positive. This implies that the system pΠ = p has a unique fixed probability

vector p =
(

1
sl

,
1
sl

, . . . ,
1
sl

)
as a solution. In other words, the distribution of

substrings of γ of length l ≤ r is uniform. Assume now that l = r + 1, and let
the numbers t, t′ and the probabilities pt′t be defined as before. Then for pt′t
we have that (7) holds too, i.e.

pt′t =
P (∩r

j=0(Y
(r)
m+j = i

(r)
m+j))

P (∩r−1
j=0(Y

(r)
m+j = i

(r)
m+j))

=
P (∩r−1

j=0(Y
(r)
m+j+1 = i

(r)
m+j+1) | Y (r)

m = i(r)m )

P (∩r−2
j=0(Y

(r)
m+j+1 = i

(r)
m+j+1) | Y (r)

m = i(r)m )
(8)

In the same way as it was done before, by using the fact that the equations
i(u)
j−1 ∗u x = i(u)

j have unique solutions x = i(u−1)
j in the quasigroup (A, ∗u),

where u = r, r − 1, . . . , 2, 1, we could consider substrings of γ′ = E(r)(β), γ′′ =
E(r−1)(β), . . . , γ(r) = E(1)(β), γ(r+1) = E(0)(β) = β. Then, for the proba-
bilities pt′t, by repeatedly using the equations (6) and (8), we will reduce the
superscripts (r) to (r − 1), to (r − 2), . . . , to (1), i.e. we will have

pt′t =
P (Y (1)

m+r−1 = i
(1)
m+r−1, Y

(1)
m+r = i

(1)
m+r)

P (Y (1)
m+r−1 = i

(1)
m+r−1)

= P (Y (1)
m+r = i

(1)
m+r | Y

(1)
m+r−1 = i

(1)
m+r−1)

= P (Y (0)
m+r = i

(0)
m+r)

where i(0)m+r ∈ β. Since P (Y (0)
m+r = i

(0)
m+r) = q

(0)
im+r

we have
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pt′t =

⎧⎪⎨⎪⎩
0 if i′(r+1)

j �= i(r+1)
j for some j = m, . . . ,m + r − 1

q
(0)
im+r

if i′(r+1)
j = i(r+1)

j for each j = m, . . . , m + r − 1

which implies

sr+1−1∑
t′=0

pt′t =
s−1∑

i
(r+1)
m−1 =0

s−1∑
i′(r+1)

m =0

. . .
s−1∑

i′(r+1)
m+r−2=0

pt′t =
s−1∑

i
(r+1)
m−1 =0

q
(0)
im+r

=
s−1∑

i
(r)
m =0

q
(0)
im+r

=
s−1∑

i
(r−1)
m+1 =0

q
(0)
im+r

= · · · =
s−1∑

i
(0)
m+r=0

q
(0)
im+r

= 1

(9)

We should note that the equations

s−1∑
i
(r+1)
m−1 =0

q
(0)
im+r

=
s−1∑

i
(r)
m =0

q
(0)
im+r

= . . .

hold true since the equations i(u)
j−1 ∗u x = i(u)

j have unique solutions in the quasi-
group (A, ∗u), for each u = r + 1, r, . . . , 2, 1.
Hence, the transition matrix Π is doubly stochastic, it is regular (Πr+1 has posi-
tive entries) which means that the system pΠ = p has a unique fixed probability

vector p =
(

1
sr+1

,
1

sr+1
, . . . ,

1
sr+1

)
as a solution.

Remark 1. Generally, the distribution of the substrings of lengths l for l > n in
a string γ = E(n)(β) is not uniform. Namely, for l = n + 1, in the same manner
as in the last part of the preceding proof, one can show that pt′t = P (Y (0)

m+n+1 =
i
(0)
m+n+1 | Y

(0)
m+n = i

(0)
m+n) and then (as in (9)) we have

sn+1−1∑
t′=0

pt′t =
s−1∑

i
(0)
m+n=0

P (Y (0)
m+n+1 = i

(0)
m+n+1 | Y

(0)
m+n = i

(0)
m+n).

Of course, the last sum must not be equal to 1, i.e. the transition matrix Π
must not be doubly stochastic. The same consideration could be made for l =
n + 2, n + 3, . . . as well.

Appendix 2: Proof of Theorem 3

Consider a finite quasigroup (A, ∗) of order s and take a fixed element a ∈ A
such that a ∗ a �= a. We will prove the Theorem 3 in the more extreme case and



180 S. Markovski, D. Gligoroski, and L. Kocarev

so we take a string α = a1 . . . ak of period 1 where ai = a for each i ≥ 1. Then
we apply the transformation E = ea,∗ on α several times. En means that E is
applied n times and we denote En(α) = a

(n)
1 . . . a

(n)
k . The results are presented

on Figure 4.
a a . . . a a . . .

a a′
1 a′

2 . . . a′
p−1 a′

p . . .

a a′′
1 a′′

2 . . . a′′
p−1 a′′

p . . .

a a′′′
1 a′′′

2 . . . a′′′
p−1 a′′′

p . . .

a a
(4)
1 a

(4)
2 . . . a

(4)
p−1 a

(4)
p . . .

...
...

...
...

...

We have that a′
p = a for some p > 1 since a ∗ a �= a and a′

i ∈ A (so we
have that p is at least s), and let p be the smallest integer with this property.
It follows that the string E(α) is periodical with period p. For similar reasons
we have that each of the strings En

a (α) is periodical. We will show that it is not
possible all of the strings En

a (α) to be of same period p . If we suppose that it
is true, we will have a

(n)
p = a for each n ≥ 1. Then we will also have that there

are bi ∈ A such that the following equalities hold:

a
(n)
p−1 = bp−1 for n ≥ 2

a
(n)
p−2 = bp−2 for n ≥ 3

...
a
(n)
1 = b1 for n ≥ p

Then we have that a ∗ b1 = b1, and that implies a
(n)
1 = b1 for each n ≥ 1. We

obtained a∗a = a∗b1 = b1, implying a = b1, a contradiction with a∗a �= a. As a
consequence we have that a

(p+1)
1 = a ∗ a

(p)
1 = a ∗ b1 �= b1, a

(p+1)
2 = a

(p+1)
1 ∗ b2 �=

b2, . . . , a
(p+1)
p−1 = a

(p+1)
p−2 ∗ bp−1 �= bp−1, a

(p+1)
p = a

(p+1)
p−1 ∗ a �= a. We conclude that

the period of the string Ep+1
a (α) is not p.

Next we show that if a string β ∈ A+ has a period p and γ = E(β) has a
period q, then p is a factor of q. Recall that the transformation E by Theorem
1 is a permutation and so there is the inverse transformation E−1. Now, if γ =
b1 . . . bqb1 . . . bq . . . b1 . . . bq, then β = E−1(γ) = c1c2 . . . cqc1c2 . . . cq . . . c1c2 . . . cq

is a periodical string with period ≤ q. So, p ≤ q and this implies that p is a
factor of q.

Combining the preceding results, we have proved the following version of
Theorem 3:

Let α be a string with period p0. Then the strings β = En
a (α) are periodical

with periods pn that are multiples of p0. The periods pn of β satisfy the inequality

ppn−1 > pn−1

for each n ≥ 1.
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Abstract. In this paper we present a distinguisher targeting towards
irregularly clocked filter generators. The attack is applied on the irregu-
larly clocked stream cipher called LILI-II. LILI-II is the successor of the
cipher LILI-128 and its design was published in [1]. There have been no
known attacks better than exhaustive key search on LILI-II. Our attack
is the first of this kind that distinguishes the cipher output from a ran-
dom source using 2103 bits of keystream using computational complexity
of approximately 2103 operations.

1 Introduction

Stream ciphers are a part of the symmetric family of encryption schemes. Stream
ciphers are divided into two classes, synchronous and self-synchronous. In this
paper we will consider a special class of the synchronous stream ciphers, namely
irregularly clocked binary stream ciphers. The considered class of irregularly
clocked stream ciphers include a filter generator from which the output is dec-
imated in some way. A filter generator consists of a linear part and a boolean
function (typically a nonlinear boolean function). To create the keystream some
positions are taken from the internal state of the linear part and fed into the
boolean function. The output of the boolean function is then combined with the
message by an output function, typically the XOR operation.

Although there exist standardized block ciphers like AES [2], many people
believe that the use of stream ciphers can offer advantages in some cases, e.g.,
in situations when low power consumption is required, low hardware complexity
or when we need extreme software efficiency. To reinforce the trust in stream
ciphers it is imperative that the security of stream ciphers are carefully studied.

Several different kinds of attacks can be considered on stream ciphers. We
usually consider the plaintext to be known, i.e. the keystream is known and we
try to recover the key. In 1984 Siegenthaler [3] introduced the idea of exploiting
the correlations in the keystream. As a consequence of this attack, nonlinear
functions must have high nonlinearity.
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This attackwas later followedby the fast correlationattackbyMeier andStaffel-
bach [4]. In a fast correlation attack one first tries to find a low weight parity check
polynomial of the LFSRand then applies some iterative decoding procedure. Many
improvements have been introduced on this topic, see [5, 6, 7, 8, 9, 10].

Algebraic attacks have received much interest lately. These attacks try to
reduce the key recovery problem to the problem of solving a large system of
algebraic equations [11, 12].

In this paper we will consider a distinguishing attack. A distinguishing attack
is a known keystream attack, i.e., we have access to some amount of the keystream
and from this data we try to decide whether this data origins from the cipher we
consider, or if the data appears to be random data, see e.g., [13, 14, 15, 16, 17].

One of the submissions to the NESSIE project [18] was the irregularly clocked
stream cipher LILI-128 [19]. Several attacks such as [20, 7, 11, 12, 17] on LILI-128
motivated a larger internal state. The improved design that became the successor
of LILI-128 is called LILI-II [1], and it was first published in ACISP 2002. LILI-II
was designed by Clark, Dawson, Fuller, Golić, Lee, Millan, Moon and Simpson,
and uses a 128 bit key which is expanded and used with a much larger internal
state, namely 255 bits instead of 128 in LILI-128.

So far no attacks on LILI-II have been published. In this paper we present a
distinguishing attack on LILI-II. The attack uses a low weight multiple of one
of the linear feedback shift registers (LFSR), i.e., it belongs to the class of linear
distinguishers, see [21, 22]. It collects statistics from sliding windows around the
positions of the keystream, where the members of this recursion are likely to
appear. The strength of the attack is the updating procedure used when moving
the windows, this procedure allows us to receive many new samples with very
few operations. To distinguish the cipher from a random source we need 2103

bits of keystream and the complexity is around 2103 operations. This is the first
attack on LILI-II faster than exhaustive key search.

The paper is organized as follows, in Section 2 we explain some theory needed
for the attack. Section 3 describes the idea and the different steps in the attack.
In Section 4 we describe the stream cipher LILI-II, and how the attack can be
applied to this cipher step by step. To verify the correctness of the attack some
simulations are presented in Section 5. The results of the attack is assembled in
Section 6, and finally we conclude the paper in Section 7.

2 Preliminaries

2.1 Irregularly Clocked Filter Generators

Our attack considers irregularly clocked stream ciphers where the output is taken
from some LFSR sequence in some arbitrary way. Note that many well known
designs are of this form, e.g., the shrinking generator, self-shrinking generator,
alternating step, LILI-128, LILI-II etc. The case we consider in this paper is
illustrated in Figure 1.

The keystream generator is divided into two parts, a clock control part and
a data generation part. The clock control part produces symbols, denoted by ct
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Clock control Data generation

Clock control �ct
LFSR

����
����

f

�
zt

Fig. 1. A general model of an irregularly clocked filter generator

at time instant t in Figure 1, in some arbitrary way. This sequence determines
how many times we should clock the LFSR in the data generation part, before
we produce a new output symbol.

The data generation part is a filter generator, i.e., an LFSR producing a
linear sequence, denoted by st, st+1, . . ., from this LFSR some symbols are taken
from the internal state and are used as input into a boolean function, denoted
f in Figure 1.

2.2 Finding a Low Weight Multiple

In our attack we need a low weight recursion of weight w for the LFSR sequence
s, i.e, a relation that sums to zero for all time instances t.

st + st+τ1 + . . . + st+τw−1 = 0 mod 2. (1)

One technique to find such relations is to find multiples of the original feed-
back polynomial. Several methods to find such multiples of low weight has been
proposed and they focus on optimizing different aspects, e.g., finding multiple
with as low degree as possible, or accepting a higher degree but reducing the
complexity to find the multiple. In our attack the degree of the multiple is of
high concern.

Assume that we have a feedback polynomial g(x) of degree r and search
for a multiple of weight w, according to [23] the critical degree when these
multiples start to appear is (w − 1)!1/(w−1)2r/(w−1). Golić [23] also describes
an algorithm that focuses on finding multiples of the critical degree. The first
step is to calculate the residues xi mod g(x), then one computes the residues
xi1 + . . . xik mod g(x) for all

(
n
k

)
combinations 1 ≤ i1 ≤ . . . ≤ ik ≤ n, with n

being the maximum degree of the multiples. The last step is to use fast sorting
to find all of the zero and one matches of the residues from the second step. The
complexity of this algorithm is approximately O(S log S) with S = (2k)!1/2

k! 2r/2

for odd multiples of weight w = 2k + 1, and S = (2k−1)!k/(2k−1)

k! 2rk/(2k−1) for
even multiples of weight w = 2k.

Wagner [24] presented a generalization of the birthday problem, i.e., given k
lists of r-bit values, find a way to choose one element from each list, so that these
k values XOR to zero. This algorithm finds a multiple of weight w = k +1 using
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lower computational complexity, k · 2r/(1+�log k�), than the method described
above, on the expense of the multiples degree, which is 2r/(1+�log k�). Since the
number of samples is of high concern to us we have chosen to work with the
method described in [23]. From now on we assume that the LFSR sequence is
described by a low weight recursion.

3 Description of the Attack

We consider a stream cipher as given in Figure 1, where s0, s1, s2, . . . denotes the
sequence from the LFSR in the data generation part, and z0, z1, z2, . . . denotes
the keystream sequence. The clock control mechanism ct determines for each
t how many times the LFSR is clocked before zt is produced. After observing
z0, z1, . . . , zT the LFSR has been clocked

∑T
t=0 ct times. Since we are attacking ir-

regularly clocked ciphers we will not know exactly where symbols from the LFSR
sequence will be located in the output keystream, not even if they appear at all.

We will fix one position in the recurrence relation, and around the estimated
location of the other symbols we will use sliding windows. When using windows
of adequate size we have a high probability that all the symbols in the relation (if
not removed by the irregular decimation) are included. We will then calculate how
many symbols from the different windows sum to zero. Only one of these combi-
nations contribute with a bias, the others will appear as random samples. In the
following subsections we will describe the different steps we use in our attack.

The way we build the distinguisher is influenced by previous work on distin-
guishers, see for example [14, 21, 22, 25, 13].

3.1 Finding a Low Weight Multiple

The success of our attack depends on the use of low weight recurrence relations,
hence the first step is to find a low weight multiple of the LFSR in the data
generation part. In the attack we use a multiple of weight three, it is also possible
to mount the attack with multiples of higher weight. Using a multiple of higher
weight lowers the degree of the multiple, but it also lowers the probability that
all symbols in a recurrence are included after the decimation, and in general
also lowers the correlation property of the boolean function. So from now on we
assume that we use a weight three recurrence relation. We will use the methods
described in Section 2.2 to find the multiple.

3.2 Calculating the Correlation Property of f for a Weight Three
Recursion

Assume that we have a weight three relation for the LFSR sequence according to

st + st+τ1 + st+τ2 = 0 mod 2.

Let St = (st+i1 , st+i2 , . . . , st+id
) denote the input bits to f at time t taken from

positions i1, i2, . . . , id. The correlation property for weight three recurrence re-
lation of the nonlinear boolean function f , denoted εf , is defined to be
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εf =
∣∣∣1
2
− Pr
(
f(St)⊕ f(St+τ1)⊕ f(St+τ2) = 0 | st ⊕ st+τ1 ⊕ st+τ2 = 0, ∀t

)∣∣∣.
If the LFSR would be regularly clocked (ct = 1, ∀t), the probability above is
equivalent to

|1
2
− Pr(zt + zt+τ1 + zt+τ2 = 0)|.

The correlation property can be calculated by simply trying all possible input
combinations into the function. Since we use a weight three recursion some com-
binations will not be possible and the distribution will be biased (bias>0), see
[17]. The correlation property of boolean functions has also been discussed in [20].

3.3 The Positions of the Windows

Consider again the weight three relation, but now with irregular clocking. We
denote the expected value of the clocking sequence ct by E(C). The size of
the windows depends on the distance from the fixed position, hence we will fix
the center position in the recurrence and use windows around the two other
positions. We rewrite the recurrence as

st−τ1 + st + st+τ2−τ1 = 0 mod 2.

The expected distance between the output from f , corresponding to input St−τ1

and St, is τ1/E(C) since the sequence is decimated, similarly the distance be-
tween St and St+τ2−τ1 is τ2−τ1

E(C) . Figure 2 illustrates how we position the windows
of size r in the case of a weight three recursion.

3.4 Determining the Size of the Windows

The output sequence from the clock-control part, denoted by ct in Figure 1, is
assumed to have a fixed distribution independent of t. By using the central limit
theorem we know that the sum of a large number of random variables approaches
the normal distribution. So Yn = C1 +C2 + . . .+Cn ∈ N(n ·E(C), σc

√
n), where

n denotes the number of observed symbols, E(C) the expected value of the
clocking sequence and σc the standard deviation of the clocking sequence.

If the windows are sufficiently large, the correct position of the symbol will
be located inside the window with a high probability,

P (nE(C)− σc
√

n < Yn < nE(C) + σc
√

n) = 0.682,
P (nE(C)− 2σc

√
n < Yn < nE(C) + 2σc

√
n) = 0.954.

Thus we choose a window size of four standard deviations.

zt− τ1
E(C)−

r1
2

. . . zt− τ1
E(C)+

r1
2 . . . zt . . . z

t+
τ2−τ1
E(C) − r2

2
. . . z

t+
τ2−τ1
E(C) +

r2
2

Fig. 2. Illustration of the window positions in the case with a weight three recurrence
relation
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3.5 Estimate the Number of Bits We Need to Observe

The main idea of the distinguishing attack is to create samples of the form

zw1 + zt + zw2 ,

where w1 is any position in the first window and w2 is any position in the
second window. We will run through all such possible combinations. As will be
demonstrated, each sample is drawn according to a biased distribution.

To determine how many bits we need to observe to reliably distinguish the
cipher from a random source, we need to make an estimate of the bias.

First we consider the case of a regularly clocked cipher. We denote the window
sizes by r1, r2. In the following estimations we have to remember that we are
calculating samples, and that for every time instant we get r1 · r2 new samples.
For each time instant one relation contributes with the bias εf , the other r1 ·r2−1
relations are random. The bias can roughly be calculated as

εf ·
1
r1
· 1
r2

,

assuming that st−τ1 and st+τ2−τ1 always appear inside the windows. When we
have irregular clocking the output from the LFSR is decimated, i.e., some terms
will not contribute to the output sequence. The probability that the end two
terms of a weight three recurrence relation is included in the keystream and in
the windows is denoted by pdec. In the approximation we neglect the probability
that the result in some cases deviates more than two standard deviations from
the expected position, i.e., the component lies outside the window. This gives an
estimate of the full bias showed in (2), the approximation has been compared
with simulation results and works well, see Section 5.

εfull = εf ·
1
r1
· 1
r2
· pdec. (2)

In the approximation we have estimated that the probability for the position
of the taps inside the windows is uniform, the purpose is to make the updating
procedure when moving the windows as efficient as possible, this is in fact the
strength of the attack. A better approximation would be to weight the positions
inside the window according to the normal distribution. This might decrease
the number of needed symbols but would make an efficient updating procedure
much more difficult.

We can now estimate how many keystream bits we need to observe, in order
to make a correct decision. In [25] the statistical distance is used.

Definition 1. The statistical distance, denoted ε, between two distributions P0, P1

defined over a finite alphabet X , is defined as

ε = |P0 − P1| =
1
2

∑
x∈X

|P0(x)− P1(x)|, (3)

where x is an element of X .
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If the distributions are smooth, the number of variables N we need to observe is
N ≈ 1/ε2, see [25]. Note that the error probabilities are decreasing exponentially
with N . Thus the number of samples we need to observe can be estimated as

r2
1 · r2

2

ε2
f · p2

dec

. (4)

At each time instant we receive r1 · r2 new samples, and hence the total number
of bits we need for the distinguisher can be estimated by (5).

N ≈ r1 · r2

ε2
f · p2

dec

. (5)

The above Equations (2-5) assume independent samples, this is not true
in our case, but the equation is still good approximation on the number of
samples needed in the attack. A similar expression can be derived in a another
independent way, in Appendix A it is stated that the standard deviation for the
total sum of samples is

√
N r1r2

4 . The bias of the samples is denoted by εtot, for
a successful attack Nεtot > 2

√
N r1r2

4 should hold, solving this equation for N
gives N > r1r2

ε2
tot

.

3.6 Complexity of Calculating the Samples

The strength of the distinguisher is that the calculation of the number of ones
and zeros in the windows can be performed very efficiently, when we move the
first position from zt to zt+1 we also move the windows one step to the right.

We denote the number of zeros in window one at time instant t by Xt,
similarly we denote the number of zeros in windows two by Yt, the number of
samples that fulfill zw1 + zt + zw2 = 0 is denoted Wt, where w1, w2 are some
positions in window one respectively window two . Hence when moving the
windows we get the new number of zeros Xt+1 and Yt+1 by subtracting the first
bit in the old window and adding the new bit included in the window, e.g., for
window one,

Xt+1 = Xt − zt− τ1
E(C)−

r1
2

+ zt− τ1
E(C)+

r1
2 +1,

and similarly for window two. From the Xt+1 and Yt+1 we can, with few basic
computations calculate Wt+1.

We define one operation as the computations required to calculate Wt+1 from
Xt and Yt.

Theorem 1. The proposed distinguisher requires N = r1·r2
ε2

f ·p2
dec

bits of keystream
and uses a computational complexity of approximately N operations.

Although the number of zeros in the windows Xt+1, Yt+1 are dependent of
the previous number of zeros in the window Xt, Yt, the covariance between the
number of samples received at time instant t and t+1 is zero, Cov(Wt+1,Wt) = 0,
see Appendix A.
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1. Find a weight three multiple of theLFSR.
2. Calculate the bias εf .
3. Determine the positions of the windows.
4. Calculate the sizes r1, r2 of the windows.
5. Estimate the number of bits N we need to observe.
6. for t from 0 to N

if zt = 0
W + = Xt · Yt + (r1 − Xt)(r2 − Yt)

else if zt = 1
W + = Xt(r2 − Yt) + (r1 − Xt)Yt

end if
Move window and update Xt, Yt

end for
7. if |W − N · r1·r2

2
| >

√
N · r1 · r2

output “cipher” otherwise “random”.

Fig. 3. Summary of the proposed distinguishing attack

3.7 Hypothesis Testing

The last step in the attack is to determine whether the collected data really is
biased. A rough method for the hypothesis test is to check whether the result
deviates more than two standard deviations from the expected result in the
case when the bits are truly random. The standard deviation for a sum of these
samples, can be estimated by σ =

√
N r1r2

4 , see Appendix A, where r1 and r2 are
the sizes of the windows and N is the number of bits of keystream we observe.

3.8 Summary of the Attack

In Figure 3 we summarize the attack, where Xt denotes the number of zeros in
window one, Yt the number of zeros in window two, W denotes the total sum of
the samples and r1, r2 the sizes of window one respectively window two.

4 LILI-II

4.1 Description of LILI-II

LILI-II [1] is the successor of the NESSIE candidate stream cipher LILI-128
[19]. Attacks such as [20, 7, 11, 12, 17] on LILI-128 motivated a larger internal
state, which is the biggest difference between the two ciphers, LILI-II also use a
nonlinear boolean function fd with 12 input bits instead of 10 as in LILI-128.

Both the members of the LILI family are binary stream cipher that use
irregular clocking. They consists of an LFSRc, that via a nonlinear function
clocks a second LFSR, called LFSRd, irregularly. The structured can be viewed
in Figure 4. LILI-II use a key length of 128 bits, the key is expanded and
used to initialize the two LFSRs. The first shift register, LFSRc is a primitive
polynomial of length 128, and hence has a period of 2128 − 1. The feedback
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Fig. 4. Overview of LILI keystream generator

polynomial for LFSRc is given by

x128 + x126 + x125 + x124 + x123 + x122 + x119 + x117 + x115 + x111 + x108 +
x106 + x105 + x104 + x103 + x102 + x96 + x94 + x90 + x87 + x82 + x81 +
x80 + x79 + x77 + x74 + x73 + x72 + x71 + x70 + x67 + x66 + x65 +
x61 + x60 + x58 + x57 + x56 + x55 + x53 + x52 + x51 + x50 + x49 +
x47 + x44 + x43 + x40 + x39 + x36 + x35 + x30 + x29 + x25 + x23 +
x18 + x17 + x16 + x15 + x14 + x11 + x9 + x8 + x7 + x6 + x1 + 1.

The Boolean function fc takes two input bits from LFSRc, it is chosen as

fc(x0, x126) = 2 · x0 + x126 + 1 . (6)

The output of this function is used to clock LFSRd irregularly. The output
sequence from fc is denoted ct and ct ∈ {1, 2, 3, 4}, i.e., LFSRd is clocked at
least once and at most four times between consecutive outputs. On average,
LFSRd is clocked c̄ = 2.5 times.

LFSRd is chosen to have a primitive polynomial of length 127 which pro-
duces a maximal-length sequence with a period of Pd = 2127 − 1. The original
polynomial was found not to be primitive, see [26], and has hence been changed
into

x127 + x121 + x120 + x114 + x107 + x106 + x103 + x101 + x97 + x96 + x94 + x92 +
x89 + x87 + x84 + x83 + x81 + x76 + x75 + x74 + x72 + x69 + x68 + x65 +
x64 + x62 + x59 + x57 + x56 + x54 + x52 + x50 + x48 + x46 + x45 + x43 +
x40 + x39 + x37 + x36 + x35 + x30 + x29 + x28 + x27 + x25 + x23 + x22 +
x21 + x20 + x19 + x18 + x14 + x10 + x8 + x7 + x6 + x4 + x3 + x2 + 1

Twelve bits are taken from LFSRd as input to the function fd, these bits
are taken from the positions (0,1,2,7,12,20,30,44,65,80,96,122) of the LFSR. The
function fd is given as a truth table, note that also the boolean function described
in the original proposal was weak and has been replaced, see [26].

4.2 Attack Applied on LILI-II

Low Weight Multiple: According to [23] weight three multiples will start to
appear at the degree 264, since the original shift register has degree 127. The
complexity to find the multiple is O(270).
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Table 1. The correlation property of boolean functions of some clock controlled gen-
erators, using weight three and weight four recursions

Generator Number of input bits Bias

w = 3 w = 4

LILI-128 10 2−9.00 2−9.07

LILI-II 12 2−13.22 2−12.36

If we instead would mount the attack with a weight four multiple the expected
degree of the polynomial would be 243.19, the complexity to find a weight four
multiple is O(291.81).

Correlation property of fd: In Table 1 some examples are presented from
two clock controlled ciphers, these results are based on a weight three and a
weight four recursion.

In the case of LILI-128 and LILI-II the correlation property of fd are ap-
proximately the same for a weight three relation as for a weight four relation.
When using multiples of higher weight than four the correlation property of the
functions decreases significantly.

Position of the Windows: When trying to find a multiple of weight three
for LFSRd in LILI-II, we expect the degree of the recurrence to be 264, i.e.,
τ1 ≈ 263 and τ2 ≈ 264, and hence τ2 − τ1 ≈ 263. The output sequence from
the clock-control part denoted by ct in Figure 4 takes the values ct ∈ {1, 2, 3, 4}
with equal probability, i.e., a geometric distribution. Thus in the case of LILI-II
we know that E(C) = 2.5 and σc =

√
7.5. The center positions of the windows

will be positioned approximately at t− 261.68 and t+261.68, where t denotes the
position of the center symbol in the recurrence.

Determine the Size of the Windows: As stated in Section 4.2 we know
that E(C) = 2.5 and σc =

√
7.5 for LILI-II. We will use a window size of four

standard deviations, i.e., r = 4
√

7.5 · n.
Using the expected positions of the windows for LILI-II from previous section

the expected window sizes for a weight three relation are r = 4
√

7.5 · 261.68 =
234.29.

Estimate the Number of Bits We Need to Observe: If we use the esti-
mated numbers from the previous section and Equation (5) we get the following
estimate on the number of bits we need to observe to distinguish LILI-II from a
random source. For w = 3,

N ≈ 234.29·2

2(−13.22)·2 · 2(−4)·2 ≈ 2103.02.
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5 Simulations on a Scaled Down Version of LILI-II

To verify the correctness of the attack we performed the attack on a scaled down
versions of LILI-II. In the scaled down version we kept the original clock control
part unchanged, but used a weaker data generation part. Instead of the original
LFSRd we used the primitive trinomial,

x3660 + x1637 + 1.

We fix the center member of the feedback polynomial, and the center position
for window one will be positioned at t− τ1/E(C) = t− 3660−1637

2.5 = t− 809, and
at t + τ2−τ1

E(C) = t − 1637
2.5 = t + 655 for window two. We use window sizes of four

standard deviations, i.e., r1 = 4
√

7.5 · 809 = 312 and r2 = 4
√

7.5 · 655 = 280.
The boolean function fd was replaced with the 3-resilient 7-input plateaued

function also used in [27],

fd(x) = 1 + x1 + x2 + x3 + x4 + x5 + x6 + x1x7 + x2(x3 + x7) + x1x2(x3 + x6 + x7).

The bias of this boolean function for a weight three relation is εfd
= 2−4. For a

weight three relation the probability that all bits are included in the keystream
is pdec = 2−4. The number of bits we need to observe can now be estimated as

N ≈ r1 · r2

ε2
fd
· p2

dec

= 233.

We used N = 236.8054 in our simulated attack. The number of combinations
fulfilling the recurrence equation, when simulating the attack was

W = 252.2201 − 229.2829,

where 252.2201 is half of the total number of collected samples. This gives a
deviation of 229.2829 from the expected value of a random sequence and hence a
simulated value of εtot = 2−23.9372. This can be compared with the theoretically
derived value which is εtot = 2−24.4147. The standard deviation can be calculated
as σ =

√
N r1r2

4 = 225.6101. We reliably distinguish the cipher from a random
source.

To verify the expression on the variance (Appendix A) we also performed the
attack on a random sequence of bits. The results matched the theory well.

6 Results

In this section we summarize the results of the attack applied on LILI-II, we
also show the results for the attack if performed on LILI-128. Observe that there
exist many better attacks on LILI-128. These attacks all use the fact that one
of the LFSRs only has degree 39, if this degree would be increased the attacks
would become significantly less effective, the complexity of our attack would not
be affected at all.
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Table 2. The number of bits needed for the distinguisher for two members of the LILI
family

Function r1 r2 � bits needed

LILI-128 225.45 225.45 276.95

LILI-II 234.29 234.29 2103.02

In Table 2 we list the sizes on the windows used to attack the generator and
the total number of keystream bits we need to observe to reliably distinguish the
ciphers from a random source. The results in the table is calculated for a weight
three recurrence relation.

7 Conclusion

In this paper we have described a distinguisher applicable to irregularly clocked
stream ciphers. The attack has been applied on a member of the LILI family,
namely LILI-II. The attack on LILI-II needed 2103 bits of keystream and a com-
putational complexity of approximately 2103 operations to reliably distinguish
the cipher from random data. This is the best known attack of this kind so far.
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A Variance of the Number of Combinations

Let Xt denote the number of zeros in window one and similarly Yt denotes the
number of zeros in window two at the time t. r1, r2 denotes the sizes of windows.

E(Xt) = r1
2 E(X2

t ) = r2
1+r1
4 V (Xt) = r1

4

E(Yt) = r2
2 E(Y 2

t ) = r2
2+r2
4 V (Yt) = r2

4

Let Zt denote the bit in the center position at time t, and W ′
t the number of

samples fulfilling the recurrence relation at time t. To make the computations a
bit simpler we denote Wt = W ′

t − r1r2
2 , i.e., we subtract the expected value of

W ′
t , hence E(Wt) = 0. We also introduce the symbol At = XtYt +(r1−Xt)(r2−

Yt)− r1r2/2.

Wt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
XtYt + (r1 −Xt)(r2 − Yt)− r1r2/2︸ ︷︷ ︸

At

if Zt = 0,

−
(
XtYt + (r1 −Xt)(r2 − Yt)− r1r2/2

)︸ ︷︷ ︸
At

if Zt = 1.

We define W as the sum of Wt for N bits, W =
∑N−1

t=0 Wt. Hence

E(W ) = E(
N−1∑
t=0

Wt) =
N−1∑
t=0

E(Wt) = 0.
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We are trying to calculate V (
∑N−1

i=0 W ′
t ) =V (

∑N−1
i=0 Wt + N r1r2

2
) =V (
∑N−1

i=0 Wt)

= V (W ).

E(W 2) = E
(
(
N−1∑
t1=0

Wt1)(
N−1∑
t2=0

Wt2)
)

=
N−1∑
t1=0

N−1∑
t2=0

E(Wt1 ·Wt2)

– For t1 �= t2

E(Wt1Wt2) = 1
4

(
E(Wt1Wt2 |Zt1 = 0, Zt2 = 0) + E(Wt1Wt2 |Zt1 = 0, Zt2 = 1)+

+E(Wt1Wt2 |Zt1 = 1, Zt2 = 0) + E(Wt1Wt2)|Zt1 = 1, Zt2 = 1)

)
=

= 1
4
E
(
At1At2 − At1At2 − At1At2 + (−At1)(−At2)

)
= 0.

– For t1 = t2

E(W 2
t ) = 1

2

(
E(W 2

t |Zt = 0) + E(W 2
t |Zt = 1)

)
= E(A2) =

= 4E(X2)E(Y 2) + 4r1r2E(X)E(Y )− 4r1E(X)E(Y 2)
−4r2E(X2)E(Y ) + r2

1r2
2

4 −
−r2

1r2E(Y )− r1r
2
2E(X) + r2

1E(Y 2) + r2
2E(X) =

= r1r2
4

So

E(W 2) =
N−1∑
t1=0

N−1∑
t2=0

E(Wt1Wt2) =
N−1∑
t=0

E(W 2
t ) =

N−1∑
t=0

r1r2

4
= N · r1r2

4
.

Finally we can give and expression or the variance.

V (W ) = E(W 2)−E(W )2 = N · r1r2

4
.
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ABSG, and some of their properties are studied. We apply a range of
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1 Introduction

In recent years there has been renewed interest in designing stream cipher
keystream generators (KGs) capable of being implemented in small software
or hardware and operating at very high rates. The Shrinking Generator (SG) [2]
and Self-Shrinking Generator (SSG) [8] are schemes providing a method for ir-
regular decimation of pseudorandom sequences such as those generated by linear
feedback shift registers (LFSRs).
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However, similarly to the SG and the SSG, the BSG can be vulnerable to timing
attacks. The BSG has the advantage over the SG and SSG that it operates at a
rate of 1/3 instead of 1/4 (i.e. producing n bits of the output sequence requires,
on average, 3n bits of the input sequence).

Given that the BSG is aimed as a building block for constructing a KG, it
is essential to know how simple it is to reconstruct parts of the input sequence
from the output. This arises naturally in the context of stream cipher design,
where matching known plaintext and ciphertext immediately gives keystream
values, i.e. subsequences of the output sequence, and where knowledge of parts
of the input sequence is a prerequisite to determining the secret key used to
generate the sequence. Furthermore, in order to avoid algebraic attacks (see
among other [1, 3]), it is important to know how many relations that relate some
outputs bits to consecutive input bits can be obtained.

The outline of the paper is as follows. In Section 2, we recall the original
description of the BSG and we provide an equivalent specification which oper-
ates on the differential of the original sequence. In Section 3, we consider two
strategies in order to reconstruct the original sequence from the output sequence
of the BSG. We give a basic attack which has complexity O(L32

L
3 ) and requires

O(L2
L
3 ) keystream bits, where L is the length of the underlying LFSR. We then

improve this attack to get a complexity of O(L32
L
4 ). In Section 4, we propose

two modified versions of the BSG designed to increase its security. Analogously
to the work in [6] for the BSG, we study some properties of both the MBSG
and the ABSG. In Section 5, we apply, to both the MBSG and the ABSG, the
strategies of Section 3 and the FBDD attack against LFSR-based generators
introduced by Krause in [7]. The best attack that we give against the ABSG
and the MBSG has complexity O(2

L
2 ) and requires O(L2

L
2 ) bits of keystream.

Finally, we conclude in Section 6.

2 The Bit-Search Generator

One can consider that both the SG and SSG are methods for bit-search-based
decimation. Indeed, both generators use a search for ones along an input bit
sequence in order to determine the output bit. Instead of using a search for
ones, the BSG uses a search for some bit b, where b varies during the pro-
cess; the variations depend on the input sequence. During the search process
for a bit b, a cursor moves along the input sequence. The search process ends
when the next occurrence of b is reached. Then, the output bit is zero if the
search process ends after just reading one bit, otherwise the output is one. The
next value of the bit b corresponds to the value of the following bit of the se-
quence.

We recall the original description of the BSG given in [6] and we provide
an equivalent specification of the BSG which operates on the differential of the
original sequence; the differential sequence d = (d0, d1, . . . ) of a sequence s is
defined by di = si ⊕ si+1, i ≥ 0, where ⊕ denotes bit-wise exclusive-or (or
modulo 2 addition). As usual, the complement of b in {0, 1} is denoted b.
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Definition 1 (BSG). Let s = (s0, s1, . . . ) be a pseudorandom bit sequence and
d = (d0, d1, . . . ) be the differential sequence. The output sequence y = (y0, y1, . . . )
of the BSG is constructed as follows:

BSG (original) BSGdiff (differential)
Input: (s0, s1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. e ← si, yj ← si ⊕ si+1;
2. i← i + 1;
3. while (si = e) i← i + 1;
4. i← i + 1;
5. output yj;
6. j ← j + 1;

Input: (d0, d1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. yj ← di;
2. if (yj = 1) then

(a) i← i + 1;
(b) while (di = 0) i← i + 1;

3. i← i + 2;
4. output yj;
5. j ← j + 1;

Example 1. Let s = 0101001110100100011101 be a bit sequence. Then, the ac-
tion of the BSG on s is described by:

010︸︷︷︸
1

1001︸︷︷︸
1

11︸︷︷︸
0

010︸︷︷︸
1

010︸︷︷︸
1

00︸︷︷︸
0

11︸︷︷︸
0

101︸︷︷︸
1

.

The action of the BSG on the input sequence s consists in splitting up the
sequence s into subsequences of the form (b, bi, b) where b ∈ {0, 1} and i ≥ 0.
For every subsequence of the form (b, bi, b), the output bit is 0 if i = 0, and 1
otherwise. The action of the BSG on the input differential sequence d consists
in splitting up the subsequence d into subsequences of the form either (0, b) or
(1, 0i, 1, b) with i ≥ 0; for every such subsequence, the output bit is the first bit
of the subsequence.

It is simple to verify that both descriptions of the BSG are equivalent given
that the output bit is zero when the search along the sequence s ends immediately
and it is one otherwise. We denote the output sequence of the BSG by BSG(s)
or BSGdiff(d) depending on the sequence we are focusing on.

Remark 1. Recovering elements of the sequence d is likely to be of very similar
signifiance to recovering elements of s. For instance, when s is generated using
an LFSR, then d can also be generated using an identical LFSR [5, 9]. Further-
more, the transformation from s to d simply shifts the position of the starting
point of the sequence. In this case, recovering the entire sequence d from partial
information has precisely the same difficulty as for the sequence s.

Assuming that the input sequence of the BSG is evenly distributed, then
the output rate of the BSG is clearly 1/3 (the number of input bits required to
produce one output bit is 1 + i with probability 1/2i (i ≥ 1)).

Proposition 1. Assume that the output sequence y produced by the BSG is
evenly distributed. Then, for each output bit yj, the expected number of known
input bits is 2 with an average entropy of 1.
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Proof. Every zero in y corresponds to a pair of bits (0, b) in the differential
sequence d of the original sequence s, and no information is available about
the bit b. Thus, if an output bit is a zero, then one input bit of d is known.
Every one in y corresponds to a pattern (1, 0i, 1, b) with i ≥ 0 in d and the
following possibilities exist: two bits are known with probability 1/2, three bits
are known with probability 1/4, . . . , that is 1+i bits are known with probability
1/2i for i ≥ 1. Hence the expected number of known bits is

∑∞
i=1(1 + i)/2i = 3.

The associated entropy is given by
∑∞

i=1 2−i log2(2−i) =
∑∞

i=1 i2−i = 2. Thus,
assuming that the output sequence is evenly distributed, for each output bit the
expected number of known input bits is 2, with an average entropy of 1. ��

3 How to Reconstruct the Input Sequence?

In this section, we consider two approaches, called Strategy 1 and Strategy 2
in order to evaluate how simple it is to reconstruct parts of either the input
sequence s or its differential from the output sequence y.

For the first approach, called Strategy 1, we assume that we have no ad-
ditionnal information on the means used to generate the input sequence. This
approach is based on the random generation of candidates for the input sequence
which are consistent with the information derived from the output sequence. For
the second approach, called Strategy 2, we assume that the feedback polynomial
used to generate the input sequence is known. This second approach consists of
building an attack on the BSG based on the choice of the most probable case
for LFSR sequences as input.

3.1 Strategy 1: Use of Random Generation of Candidates

Consider a bit sequence s, its differential sequence d and the output sequence
y = BSG(s) = BSGdiff(d). In this approach, we focus on the reconstruction of
the differential sequence d that we call the correct input string and we assume
that we have no additional information on the means used to generate the input
sequence.

A sequence c is called a differential-candidate for the output sequence y if the
equality BSGdiff(c) = y is fulfilled. One method to search for the correct input
string is to randomly generate a sequence of differential candidates for the input
bits. The probability of success of such a strategy depends on the Hamming
weight w of the subsequence, i.e. there are w places in the input sequence where
a string of zeros of uncertain length may occur. Recall that every one in the
output sequence arises from a tuple of the form (1, 0i, 1, b), where i ≥ 0 and b is
an undetermined bit. The Hamming weight of a finite sequence y is denoted by
w(y).

Proposition 2. Let d be a (finite) bit sequence and y be a sequence such that
y = BSGdiff(d). Let c be a randomly chosen string with the property that
BSGdiff(c) = y, where the probability distribution used to choose c reflects the
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probability that c = d. The probability that, for every k such that yk = 1, the
sequences d and c agree on the length of the tuple from which yk arises, is 3−w(y).

Proof. Each differential-candidate input string should have a tuple (1, 0i, 1) in-
serted for every one occurring in the output sequence; i is chosen independently
at random for each output bit and i = j with probability 2−j−1. In each of the
w(y) locations, a string of i zeros occurs in the correct input sequence with prob-
ability 2−i−1. The probability that the candidate string and the correct string
agree in any one of the w(y) positions is thus

∑∞
i=0(2

−i−1)2 = 1/3. That is, the
probability that the correct input sequence and a candidate c agree on the w(y)
choices of length of the tuples from which the ones of y arises is 3−w(y)  2−1.585y.

��
Thus, finding one output sequence with small Hamming weight yields at-

tacks that are likely to be easier than brute force attacks. This idea is used in
Strategy 2.

3.2 Strategy 2: Choice of the Most Probable Case

The goal of Strategy 2 is the reconstruction of the original input sequence s.
We assume that s is generated by a maximum length LFSR of size L with a
public feedback polynomial and the initial state of the LFSR is the secret key.
We further suppose that the feedback polynomial has been chosen carefully, i.e.
it does not have a low Hamming weight and no low weight multiple exists, in
order to avoid attacks on the differential sequence similar to the distinguishing
attack on the SG given in [4].

Recall that each zero of the output sequence y comes from two consecutive
equal bits in the input sequence s. Thus, each zero in y provides a linear equation
over the unknown LFSR sequence, namely the equality between two consecutive
bits. Similarly, each one of y comes from a pattern (b, bi, b) for some integer i ≥ 1.
Thus, by guessing i, we can construct i+1 linear equations involving consecutive
bits of the unknown LFSR sequence which are valid with probability 2−i.

Basic Attack. Let us take the first window of 2L/3 consecutive bits in the
sequence y with a Hamming weight of at most L/3. For a random window of
size 2L/3, this condition is satisfied with probability close to 1/2, so that the first
window can be found in negligible time. If the Hamming weight of the window
is strictly lower than L/3, we expand it in such a way that it contains exactly
L/3 ones (or until its size is L). We now assume that each one in the sequence
y comes from a pattern of length 3, that is a pattern of the form bbb, which is
the most probable case, occuring with probability 2−

L
3 . Then, we can write L

equations involving consecutive bits of the LFSR sequence or, equivalently, the
bits of the current state. We solve this system and we instantly check if we have
found the correct values by testing whether it allows to the correct prediction of
a few additional bits of the sequence y. In order to find the current state with
high probability (close to 1 − 1

e ), we have to repeat this procedure 2
L
3 times.

This attack costs O(L32
L
3 ) and requires O(L2

L
3 ) bits of keystream.
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Improvements to the Basic Attack. We tried several alternative strategies
such as finding a large enough keystream window with a low Hamming weight, or
connecting two smaller windows of low weight. For instance, we can determine,
in a first computation phase, 2w windows of size � bits and Hamming weight
w. For each of these windows, we suppose that every one comes from a pattern
(b, b, b), which gives � + w linear equations. These equations are all valid with
probability 2−w. This costs:

O
(

2w+�+1(
�
w

) ) .

For each pair of such windows, we know the number n1 of ones and n0 of zeros
in the sequence y between the two windows. Considering all the possible strings
bbib for integer i ≥ 1, the mean value m of i and the variance v are given by:

m =
∞∑

k=1

k

2k
= 2 , v =

∞∑
k=1

(k − 2)2

2k
= 2.

Thus, the distance between those two windows in the original sequence is likely
to belong to the interval [2n0+4n1−

√
2n1, 2n0+4n1+

√
2n1]. The Central Limit

Theorem gives the probability that the real distance between the two windows
is outside this interval:

Pr

(∑n1
i=1 Xi −mn1√

vn1
≥ 1
)

=
2√
2π

∫ ∞

1

e−
x2
2 dx  0.31.

Therefore, for each pair of windows, the probability of failure provided that
the distance used is not correct is around 1/3. We try all the values of the
distance between the two windows in this interval. If we make a correct guess,
the equations associated to the two windows can be combined to provide 2(�+w)
equations. We choose � and w such that 2(� + w) = L and we just have to solve
the system so as to test whether the obtained solution correctly predicts a few
additional keystream bits.

Since n1 isO
(

2w2�

( �
w)

)
, testing all the pairs of windows costsO

(
22w+1

√
2 2w2�

( �
w)

)
,

and the total complexity of the attack is:

O
(

2w+�+1(
�
w

) + 22w+1

√
2
2w+�(

�
w

) L3

)
.

Moreover the number of keystream bits required for the attack is:

O
(

�2w 2�(
�
w

)).
For practical values of L (L ∈ [128, 4096]), � = 25L

58 and w = 7L
116 , this provides a

complexity close to or slightly smaller than L32
L
4 and a keystream length of 2

L
4 .
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4 New BSGs to Improve the Security?

The discussion in section 3 suggests that the security of the BSG relies on the
uncertainty about the length of the input tuple required to output a one. By
contrast, if a zero is output, then there is no uncertainty about the length of the
input string. This suggests that the security might be improved by introducing
ambiguity no matter whether a zero or a one is output by the scheme.

Remark 2. Instead of aiming at an improvement in security, one may want to
enhance the rate with the same level of security. Indeed, a simple modification
to the BSG enables its rate to be increased from 1/3 to 1/2 by changing Step 3
in the BSGdiff Algorithm (Definition 1) from i ← i + 2 to i ← i + 1. However,
an adaptation of the basic attack presented in Section 3.2 to this case (for an
LFSR input) leads to an attack which costs O(2

L
3 ) and requires O(L2

L
3 ) bits of

keystream; the security is then slightly lower than for the BSG.

4.1 BSG Variants

We give two possible modifications of the BSG that are called the MBSG and
the ABSG; these two modifications are not equivalent (even if we consider the
differential sequence instead of the original sequence).

Definition 2 (MBSG & ABSG). Let s = (s0, s1, . . . ) be a pseudorandom bit
sequence. The output sequences of the MBSG and of the ABSG are constructed
as follows.

MBSG algorithm ABSG algorithm
Input: (s0, s1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. yj ← si;
2. i← i + 1;
3. while (si = 0) i← i + 1;
4. i← i + 1;
5. output yj;
6. j ← j + 1;

Input: (s0, s1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. e← si, yj ← si+1;
2. i← i + 1;
3. while (si = e) i← i + 1;
4. i← i + 1;
5. output yj

6. j ← j + 1

Example 2. Let s = 0101001110100100011101 be the input bit sequence. Then,
the action of the MBSG on s is described by:

01︸︷︷︸
0

01︸︷︷︸
0

001︸︷︷︸
0

11︸︷︷︸
1

01︸︷︷︸
0

001︸︷︷︸
0

0001︸︷︷︸
0

11︸︷︷︸
1

01︸︷︷︸
0

,

and the action of the ABSG on s is described by:

010︸︷︷︸
1

1001︸︷︷︸
0

11︸︷︷︸
1

010︸︷︷︸
1

010︸︷︷︸
1

00︸︷︷︸
0

11︸︷︷︸
1

101︸︷︷︸
0

.
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The action of the MBSG on the input sequence s consists in splitting up s into
subsequences of the form (b, 0i, 1), with i ≥ 0 and b ∈ {0, 1}. For every pattern
of the form (b, 0i, 1), the output bit is b. The action of the ABSG on s consists in
splitting up s into subsequences of the form (b, bi, b), with i ≥ 0 and b ∈ {0, 1}.
For every subsequence (b, bi, b), the output bit is b for i = 0, and b otherwise.
Both the MBSG and the ABSG clearly have a rate of 1/3, like the BSG. Indeed,
for every i ≥ 1, an output bit is produced by 1 + i input bits with probability
1/2i.

Remark 3. The action of the ABSG on an input sequence is identical to that of
the BSG, but their outputs are computed differently.

Proposition 3. Let s be a pseudorandom bit sequence. Assume that the output
sequence y = MBSG(s) is evenly distributed. Then for every output bit yj, the
expected number of known bits of s is 3 with an average entropy of 2.

Proof. If an output bit is a b, then the input sequence used to generate this
output bit must have the form (b, 0i, 1), where i ≥ 0 and i = j with probability
2−j−1. Thus, if an output bit is a b, then i + 1 bits are known with probability
1/2i for i ≥ 1. As shown in the proof of Proposition 1, the expected number of
known bits is 3 and the associated entropy is 2. ��

Proposition 3 also holds for the ABSG.

4.2 Filtering Periodic Input Sequences

We now describe the output of the MBSG and ABSG when applied to periodic
sequences (of period greater than 1) as was done in [6] for the BSG. We will
show that the BSG and the ABSG on the one hand, and the MBSG on the
other hand, behave differently in this regard.

Definition 3. For two sequences s = (si)i≥0 and s′ = (s′i)i≥0, we say that s′ is
(k-)shifted from s if there exists k ≥ 0 such that s′i = si+k for every i ≥ 0.

As usual, s is said to be eventually periodic if there exists a shifted sequence from
s which is periodic. We denote by BSG(s, i) (resp. MBSG(s, i), ABSG(s, i))
the i-shifted sequence from BSG(s) (resp. MBSG(s), ABSG(s)).

The next proposition was proved in [6] for the BSG. It also holds for the
ABSG thanks to the fact that the ABSG acts like the BSG on the input sequence.

Proposition 4. Let s be a sequence of period T . Then, the sequence ABSG(s)
is periodic, and there exists k ∈ {1, 2, 3} such that ABSG(s0, . . . , skT−1) is a
period of ABSG(s).

The framework introduced in [6] uses the associated permutation p to a pe-
riodic sequence s: we define two transpositions t0 = (∅ 0) and t1 = (∅ 1). Then,
we associate with s the permutation tsT−1 ◦ · · · ◦ ts0 over the set {∅, 0, 1}. The
integer k in the previous proposition is the order of the permutation associated
with s.
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For the MBSG, the picture is slightly different. The MBSG acts on an input
sequence s as follows: read a bit b, go to the next occurrence of one and start
again. We give to the cursor moving along the input sequence two states: ∅ when
there is no current bit looked for, and 1 otherwise. The cursor changes from state
∅ to state 1 after reading a bit. When the cursor is in state 1, it remains in state
1 if the next bit read is 0, and changes to state ∅ if the next bit read is 1.

Proposition 5. Let s be a sequence of period T . Then, the sequence MBSG(s)
is eventually periodic. Moreover, if si−1si is an occurrence of (0, 1) in s, then
the sequence MBSG(s, i+1) is periodic and a period is MBSG(si+1, . . . , si+T ).

Proof. After reading a pattern (0, 1), the cursor is always in state ∅, and thus
the bit si is the last bit read during some search process. Now, as the cursor is
in state ∅ after si, it will also be in this state after si+kT for every k. ��
In the sequel, we denote by MBSGP (s) the sequence MBSG(s, i + 1) where
(si−1, si) is the first occurrence of (0, 1) in s. Thus MBSGP (s) is a periodic
shift of MBSG(s).

Output Sequence Sets and Shifts. Given an input sequence s of period T ,
one can filter the shifted sequences (s, i) for 0 ≤ i ≤ T − 1, so as to obtain at
most T distinct output sequences. We call the set of these output sequences the
output sequence set for input s. We will show that these output sequences are
closely related to one another. The following proposition was proved in [6] in the
case of the BSG using only the action of the BSG on the input sequence. Thus,
it also holds for the ABSG.

Proposition 6. Let s = (si)i≥0 be an infinite bit sequence and k be the minimal
index such that sk �= s0. Then, for every i ≥ 0, the sequence ABSG(s, i) is shifted
from one sequence among ABSG(s, 0), ABSG(s, 1) and ABSG(s, k + 1).

In the case of the MBSG, we have to consider the periodic part MBSGP (s)
so as to obtain a similar proposition:

Proposition 7. Let s = (si)i≥0 be an infinite bit sequence where both 0 and 1
appears infinitely many times. Then, for every i ≥ 0, the sequence MBSGP (s, i)
is shifted from the sequence MBSGP (s).

Proof. Let us consider the cursor in initial state ∅ running along the sequence
s. Let sk−1sk be the first occurrence of 01 in the sequence (s, i). After reading
a pattern (0, 1), the cursor is always in state ∅. Thus, the cursor is in state ∅
after reading sk. Therefore, MBSG(s, k+1) is shifted from both MBSG(s) and
MBSG(s, i). Now, MBSG(s, k + 1) is periodic, which yields the result. ��
Maximum Length LFSR Sequences as Input. When the input sequence
s is produced by a maximum length LFSR, the periodicity properties differ
between the MBSG on the one hand, and the BSG and the ABSG on the other
hand.

A lower bound on the length of BSG(s0, . . . , skT−1), where k ∈ {1, 2, 3}, is
the order of the permutation associated with s, was proven in [6]. The proof also
holds for the ABSG:
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Proposition 8. [6] Suppose s is the output of a maximum length LFSR of degree
L ≥ 3, and let p be the associated permutation. Let k be the minimal strictly posi-
tive integer such that pk(∅) = ∅. The length of the sequences BSG(s0, . . . , skT−1)
and ABSG(s0, . . . , skT−1) are both greater than k · 2L−3 .

This bound does not answer the issue of possible subperiods. A strict lower
bound on the period length of BSG(s) was introduced in [6]. Experimentally, for
both the BSG and the ABSG, no subperiod appears when the input is produced
by a maximal-length LFSR with feedback polynomial of degree 3 ≤ L ≤ 16. As
was done in [6] for the BSG, one can show that the output sequence set of the
ABSG can be easily described from 2 distinct output sequences whose period
lengths, called short period and long period, are respectively, when no subperiod
appears, very close to T/3 and 2T/3, and their sum is then exactly T . The re-
sults for the ABSG are given in Tables 2 of Appendix C. For the MBSG, we
have:

Proposition 9. Let s be a sequence produced by a maximum length LFSR of
degree L. Consider a period of the output of the form 0λ11μ10λ21μ2 . . . 0λp1μp .
Then, the sequence MBSGP (s) has a period MBSG(t) of length T such that:

– for L = 0 mod 2, we have T = (2L−1)/3, the number of zeros in this period
is (T − 1)/2, and the number of ones is (T + 1)/2,

– for L = 1 mod 2, we have T = (2L+1)/3, the number of zeros in this period
is (T + 1)/2, and the number of ones is (T − 1)/2.

The proof of Proposition 9 is given in Appendix A.
Like for the BSG and the ABSG, subperiods may appear in a period of

MBSGP (s) of length T . Experimentally, this never happens for L ≤ 16, so that
the values in Proposition 9 are exact. The periodicity results are given in Table 4
in Appendix C.

Linear Complexity of Output Sequences. We do not have theoretical bou-
nds for the linear complexity, but the statistics for maximum length LFSRs of
degree L ≤ 16 suggest that the linear complexity is well-behaved. The results for
the linear complexity are given in Appendix C, in Tables 3 and 4 respectively
for the ABSG and the MBSG.

For the ABSG, we give the average linear complexity (denoted by LC), and
its minimal and maximal values for short and long output sequences. These
values are to be compared with those in Table 2: indeed, they show that the
linear complexity is always almost equal to the period.

For the MBSG, preliminary experiments on the linear complexity of the out-
put sequences when filtering maximum length LFSR sequences show that the
linear complexity is very close to the period. Furthermore, when the period is
prime, we observe that the linear complexity is always equal to the period (for
degrees up to 16, for which we tested every possible maximum length LFSR
output). Therefore, further study of the MBSG seems promising.
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5 Security of the MBSG and the ABSG

5.1 Strategy 1: Random Generation of Candidates

By applying Strategy 1 of subsection 3 to the MBSG and the ABSG, we get:

Proposition 10. Let s be a (finite) sequence and y be the (finite) sequence such
that y = MBSG(s). Let c be a randomly chosen string with the property that
MBSG(c) = y, where the probability distribution used to choose c reflects the
probability that c = s. The probability that, for every output bit yk, the sequences
d and c agree on the length of the tuple from which yk arises, is 3−�, where �
denotes the length of y.

Proof. Each candidate input string should have a tuple (b, 0i, 1) inserted for
every b occurring in the output sequence, where i is chosen independently at
random for each output bit, such that i = j with probability 2−j−1. The proba-
bility that the candidate string and the correct string agree in any one of the �
positions is

∑∞
i=0(2

−i−1)2 = 1/3. That is, the probability that the correct input
sequence and a candidate c agree on the � choices of length of the tuples from
which the ones of y arises is 3−�  2−1.585�. ��

One can show that Proposition 10 also holds for the ABSG. By assuming the
knowledge of no additional information on the means used to generate the input
sequence, we deduce from Proposition 10 that the Hamming weight of the output
sequence does not play a part in the input sequence reconstruction problem.

5.2 Strategy 2: Choice of the Most Favourable Case

In the case of the MBSG (resp. ABSG) applied to the output sequence of a
maximum length LFSR of size L with a public feedback polynomial, the following
attack can be mounted: it consists of finding a window of L/2 bits coming from
a pair of bits (b, 1) (resp. (b, b) for the ABSG), which occurs with probability
2−

L
2 . This window can give instantly the L bits of the current state of the LFSR.

Thus, we can instantly check if we have found the correct values. In order to
find the current state with high probability, we have to repeat this procedure
2

L
2 times. This “attack ” costs O(2

L
2 ) and requires O(L2

L
2 ) bits of keystream.

This “attack ” is slightly better than the generic attack thanks to the reduction
in memory required.

6 FBDD-Based Cryptanalysis

Krause [7] introduced a new type of attack against keystream generators, called
the FBDD-attack (FBDD for Free Binary Decision Diagram), which is a crypt-
analysis method for LFSR-based generators. A generator is said to be LFSR-
based if it consists of two components, a linear bitstream generator LG wich
generates for each initial state x ∈ {0, 1}n a linear bitstream LG(x) using one
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or more parallel LFSRs, and a compression function C which transforms the
internal bitstream into an output keystream y = C(LG(x)).

The cryptanalysis method relies on two assumptions called the FBDD As-
sumption and the Pseudorandomness Assumption (see [7] for details). The cost
of the cryptanalysis depends on two parameters of the compression function C.
The first parameter is the maximal number of output bits which C produces
on internal bitstreams of length m; let γ be the best case compression ratio of
C. Krause cryptanalysis applies when the following property is fulfilled: for all
m > 1, the probability that C(z) is a prefix of y for a randomly chosen and
uniformly distributed z ∈ {0, 1}m is the same for all keystreams y. Observe that
both the ABSG and the MBSG have this property but the BSG does not have
(nevertheless the Krause attack is expected still to work, and later we will try
to estimate its complexity). Let us denote this probability pC(m). The second
parameter, called α, depends on the probability pC(m). Indeed, the probability
pC(m) is supposed to behave as pC(m) = 2−αm, with α a constant such that
0 < α ≤ 1. This result comes from the following partition rule: each internal
bitstream z can be divided into consecutive elementary blocks z = z0 z1 ...zs−1

such that C(z) = y0y1...ys−1 with yj = C(zj) and the average length of the
elementary blocks is a small constant. Then, we have α ≈ − 1

m log(pC(m)) for
large m.

Theorem 1. [7] Let E be an LFSR-based keystream generator of key-length L
with linear bitstream generator LG and a compression function C of information
rate α and best case compression ratio γ. Let C fulfill the FBDD and the pseu-
dorandomness assumption. Then, there is an LO(1)2(1−α)(1+α)L-time bounded
algorithm which computes the secret initial state x from the first 
γα−1L�.

Remark 4. The parameter α used to compute the complexity of the FBDD at-
tack is not the information rate of the compression function, see appendix B.1
for details.

For both the ABSG and the MBSG, one can check that the FBDD Assump-
tion and the Pseudorandomness Assumption are fulfilled and the value of γ is
clearly 1/2. Our results on the FBDD attack are summarised in Table 1. In
Appendix B we explain how these results are obtained.

Remark 5. We can see in the table that αMBSG = αABSG. We deduce that the
(time and space) complexity of the FBDD attack applied to both the ABSG and
the MBSG is LO(1)20.53L.

Remark 6. When the Krause attack is applied to BSG, the complexity depends
(in a somewhat complex way) on the number of zeros in the current output
sequence. Roughly speaking, with many zeros placed at the beginning of it, the
attack will work better and one should apply the attack at such well chosen places
in the output sequence. In Appendix B we show that the complexity ranges from
LO(1)20.33L to LO(1)20.62L. The best case cannot be obtained in practice, this
would require O(2

2
3 L) of keystream, and moreover 20.33L would still be worse

than 20.25L obtained with the best attack of Section 3.2.
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Table 1. Application of Krause FBDD attack to *BSG and SSG

SSG BSG ABSG MBSG

output rate 0.25 0.333 0.333 0.333

Krause rate γ 0.5 0.5 0.5 0.5

information rate 0.25 ? 0.333 0.333

α 0.208 0.238 ≤ α ≤ 0.5 0.306 0.306

Krause time LO(1)20.66L LO(1)20.33L < ... < LO(1)20.62L LO(1)20.53L LO(1)20.53L

Attack memory LO(1)20.66L LO(1)20.33L < ... < LO(1)20.62L LO(1)20.53L LO(1)20.53L

7 Conclusion

In this paper, we studied two bit-search based techniques derived from the bit-
search generator. The three related compression techniques (BSG, MBSG and
ABSG) studied in this paper have rate 1/3, and have good periodicity properties.
Experiments suggest that they produce sequences with high linear complexity
when given maximum length LFSR sequences as input. However, according to
the cryptanalysis techniques that we have considered, the BSG seems less se-
cure than both the MBSG and ABSG. Indeed, the main attack that we pro-
pose on the BSG has a complexity close to or slightly smaller than O(L2

L
4 )

and requires O(2
L
4 ) bits of keystream and the main attack that we propose

on both the MBSG and the ABSG costs O(2
L
2 ) and requires O(L2

L
2 ) bits

of keystream. It seems that the MBSG and the ABSG are attractive compo-
nents that can be used for the de-synchronization of LFSR outputs in keystream
generation.
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A Proof of Proposition 9

We first prove the following lemma:

Lemma 1. Let s be a periodic sequence with a period of the form:

0λ11μ10λ21μ2 . . . 0λp1μp ,

with λi > 0 and μi > 0 for every i, and μp = 1. Then, we have:

1. the finite sequence MBSG(t) is a period of MBSGP (s),

2. the length of MBSG(t) is equal to p +
p∑

i=1

⌊
μi − 1

2

⌋
,

3. the number of zeros in MBSG(t) is equal to #
{
i, μi = 1 mod 2

}
,

4. the number of ones in MBSG(t) is equal to
p∑

i=1

⌊μi

2

⌋
.

Proof. As the period ends with the pattern 01, we know that a cursor with
initial state ∅ before reading the period is in state ∅ after reading this period.
Therefore, a period of MBSGP (s) is MBSG(0λ11μ1 . . . 0λp1μp).
Next, the output of a bit corresponds to reading a pattern of the form (b, 0k, 1),
with b ∈ {0, 1} and k ≥ 0. In the periodic part of the output, these patterns
necessarily contain a maximal sequence of 0’s, so 0k is some 0λi if b = 1, other-
wise (b, 0k) is some 0λi . Therefore, one output bit corresponds to each maximal
sequence 0λi . There are p such sequences in the period. The other output bits
come from patterns that do not contain 0, that is, from patterns (1, 1). Now,
in every maximal sequence 1μi , the first 1 is the end of a pattern containing a
maximal sequence of zeros. Therefore, there remains only �μi−1

2 � complete pairs
of ones in the sequence 1μi in order to output bits from pairs of ones. Thus,∑p

i=1�
μi−1

2 � output bits correspond to pairs of ones in the period. This com-
pletes the second result.
We now turn to the number of zeros. A zero is output if and only if the cor-
responding pattern in the input is of the form (0λi , 1). Now, this pattern can
correspond to an output bit if, and only if, the cursor is in state ∅ before the
maximal sequence 0λi . This is the case if, and only if, the length of the maximal
sequence 1μi−1 is odd. This gives the next result.
The number of ones comes directly from the two previous results. ��
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The proof of Proposition 9 is then a straightforward computation given the
well-known distribution of maximal sequences in a period of the input, that
appears for example in [5].

B The FBDD Attack Applied to the BSG, the ABSG
and the MBSG

B.1 Comments on Krause Article

In [7], Krause denotes by pC(m) the probability that a randomly chosen and
uniformly distributed z ∈ {0, 1}m is compatible with a given keystream y, i.e.,
that C(z) is a prefix of y. He considers only sequence generators such that this
probability is the same for every y. Then, he defines α = − 1

m log(pC(m)) and he
claims that α is the information rate per bit revealed by the keystream y about
the first m bits of the corresponding internal bitstream z, i.e.

α =
1
m

(H(Z(m))−H(Z(m)|Y )) =
1
m

(m− log(pc(m)2m)),

where Z(m) denotes a random z ∈ {0, 1}m and Y a random keystream. This
would hold if H(Z(m)|Y ) = − log(pc(m)2m) which is not always true, because,
given an output keystream, not all compatible inputs are equally probable.

To clarify, the complexity of the Krause attack does indeed depend on α as
defined, but this α is not in general equal to the information rate. We obtain a
counterexample if we compare αABSG and the information rate of its compres-
sion function.

Computation of the information rate: we computed the information rate θ
for the ABSG and the MBSG. Let m be the length of the internal bitstream, and
let z denote a random, uniformly distributed element from {0, 1}m. The number
of z such that C(z) has length i ≥ 0 is the number of patterns of the form
b1 bk1

1 b1 b2 bk2
2 b2 . . . bi bki

i bi bi+1b
ki+1
i+1 with kj ≥ 0 and

∑i
j=1 ki = m − 2i.

We have the following possible values for w = bi+1b
ki+1
i+1 :

– if w is the empty word or one bit (which can then be both 0 or 1), the pattern
occurs with probability 2m−i,

– if w has length at least 2, then we have w = bbk with k > 0, and only one
case is possible for compatibility with the next output bit. The whole pattern
occurs with probability 2m−i−1.

Let N(m) be the number of sequences b1 bk1
1 b1 b2 bk2

2 b2 . . . bi bki
i bi

of length m that are a prefix for a given y. We know that N(m) is the number
of ways of distributing m − 2i bits among i places. The number of ways of
distributing p bits among q places is a known combinatorial problem and can be
written as

(
p+q−1

p

)
. Therefore N(m) =

(
m−i−1
m−2i

)
.
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Then we have:

Hm(Z|Y ) =
∑m−2

k=2

∑� k
2 �

i=1

(
k−i−1
k−2i

)
m−i−1
2m−i−1 + 2

∑�m−1
2 �

i=1

(
m−i−2
m−2i−1

)
m−i
2m−i

+
∑�m

2 �
i=1

(
m−i−1
m−2i

)
m−i
2m−i + m−1

2m−1

Now we compute θABSG with the formula above: we obtain limm→∞(θABSG) =
1
3 , and for m ≥ 128, we already have θABSG ≈ 0.33.

Remark 7. We can also, in a very similar way, compute θ for MBSG:

Hm(Z|Y ) =
∑M−1

m=2

∑�m
2 �

i=1

(
m−i−1
m−2i

)
M−i−1
2M−i−1 +

∑�M
2 �

i=1

(
M−i−1
M−2i

)
M−i
2M−i + M−1

2M−1

We also obtain limm→∞(θMBSG) = 1
3 , and θMBSG ≈ 0.33 for m ≥ 128. At last,

a similar computation for the SSG yields limm→∞(θSSG) = 1
4 .

B.2 The FBDD Attack Applied to the ABSG and the MBSG

Recall that the cost of the FBDD cryptanalysis depends on two parameters
called α and γ. For both the ABSG and the MBSG, the best compression ratio
γ is achieved when each keystream bit comes from a pattern of length 2 and we
have γABSG = γMBSG = 1

2 . We compute in this subsection the value of αABSG

(resp. αMBSG), that is, the number of possible sequences of internal bitstream
z of length m such that ABSG(z) (resp. MBSG(z)) is a prefix for a given y
when z is a random and uniformly distributed element from {0, 1}m; for both
the ABSG and the MBSG this number does not depends on the keystream y.

Let us consider the action of the ABSG on an input sequence z. A sequence
z that produces m keystream bits, where m ≥ 0, has two possible forms:

– b1 bk1
1 b1 b2 bk2

2 b2 . . . bi bki
i bi, where kj ≥ 0

– b1 bk1
1 b1 b2 bk2

2 b2 . . . bi bki
i bi bi+1b

ki+1
i+1 , where kj ≥ 0 and the last part

bi+1b
ki+1
i+1 , that we call the last word, does not produce any bit.

Let y be an arbitrary keystream. Let Bm be the number of possible bitstream
sequences z of the form b1 bk1

1 b1 b2 bk2
2 b2 . . . bi bki

i bi of length m which
are a prefix of y. This number does not depend on y. We know that B0 =
1, B1 = 0, B2 = 1, B3 = 1, B4 = 2 . . . . For every m > 0, we have Bm =
Bm−2+Bm−3+ · · ·+B0. Indeed, if we fix the length of the first pattern b1 bk1

1 b1,
the number of possibilities is then Bm−k1−2.

Let Am the number of all possible bitstream sequences z such that ABSG(z)
is a prefix of y. We have:

Am = Bm + 2Bm−1 +
m−2∑
j=0

Bj ,

where Bm is the number of possible z of the first form, 2Bm−1 is the number of
possible z of the second form with ki+1 = 0 (when the last word contains only
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one bit, there are two possibilities for this bit), and the Bis for i ≤ m − 2 are
the number of possible z with ki+1 = m− i− 1. Therefore we have:

Am −Am−1 = Bm + Bm−1 −Bm−2

=
m−2∑
i=0

Bi +
m−3∑
i=0

Bi −
m−4∑
i=0

Bi = Bm−2 + 2Bm−3 +
m−4∑
i=0

Bi

= Am−2

Thus A0 = 0, A1 = 2 and for every m > 1, Am = Am−1 + Am−2. Solving this
recursion gives:

Am =
2√
5

(
(
1 +

√
5

2
)m − (

1−
√

5
2

)m

)
≈ 2√

5
(
1 +

√
5

2
)m

Finally when m is large enough, we compute αABSG = log(
√

5− 1) ≈ 0.306.
In the same way, one can show that αMBSG = αABSG. We deduce that the

(time and space) complexity of the FBDD attack applied to both the ABSG and
the MBSG is LO(1)20.53L. All our results for the FBDD attack are summarised
in Table 1.

B.3 The FBDD Attack Applied to the BSG

We have seen in part 6 that, for the BSG, the probability that C(z) is a prefix
of y for a randomly chosen and uniformly distributed z ∈ {0, 1}m is not the
same for all keystreams y. Thus, it is not clear whether the FBDD attack is still
relevant. In this part, we suppose it is, and we show that still the attack would
not be as effective as other attacks presented in this paper. We have at least
to take into account the fact that the probability we called pC(m) does depend
on y.

From an attacker’s point of view, the best case is when the keystream y is
uniquely composed of 0s. In this case, the value of α can be easily computed
and we have α = − 1

m log(2
m
2 ) = 1

2 .
The worst case occurs when the keystream is uniquely composed of 1s.

Let Bm denote the number of bitstream sequences of length m such that the
keystream is 111....1. We have: B0 = 0, B1 = 2, B2 = 2, B3 = 4. Moreover,
for m ≥ 3, if the bitstream sequence starts by b b

i
b, then the number of possi-

bilities is 2 × Bm−2−i. Otherwise, the bitstream sequence starts by a sequence
of the form b b

m−1
and there are two possible values for the bit b. Then, we

have Bm = 2 + 2(B0 + ... + Bm−3). Let Am = B0 + ... + Bm, then we get
the relation: Am = Am−1 + 2Am−3 + 2. By computing the limit of the series
1− 1

m log(Am −Am−1) with Magma, we obtain α ≈ 0.238.
Thus, in the general case, α belongs to the interval [0.238, 0.5]. If the attack

can be extended, its complexity will range from LO(1)20.33L to LO(1)20.62L. Then
the attacker should start at the most interesting place in the output sequence,
but in practice he has no hope to achieve the best-case complexity.
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To obtain the best case, the attacker needs to find an all-zero subsequence
with length 2

3L, and this can hardly be achieved without disposing of O(2
2
3 L)

bits of keystream. Moreover an FBDD attack in 20.33L will still be worse than
20.25L we obtain in Section 3.2.

C Statistical Results

Period and linear complexity statistics for m-LFSRs filtered by the BSG are
given in [6].

Table 2. Period statistics for m-LFSRs filtered by the ABSG

Average Minimal Maximal Average Minimal Maximal
short short short long long long

L period period period period period period
length length length length length length

8 84.63 82 88 170.38 167 173
9 169 159 183 342 328 352
10 341.1 328 358 681.9 665 695
11 682.91 657 714 1364.09 1333 1390
12 1364.08 1330 1399 2730.92 2696 2765
13 2731.34 2658 2796 5459.66 5395 5533
14 5460.08 5344 5587 10922.92 10796 11039
15 10923.04 10776 11082 21843.96 21685 21991
16 21846.16 21619 22075 43688.84 43460 43916

Table 3. Linear complexity statistics for m-LFSRs filtered by the ABSG

Average Minimal Maximal Average Minimal Maximal
L short short short long long long

lin. compl. lin. compl. lin. compl. lin. compl. lin. compl. lin. compl.

8 84 81 88 169.38 166 173
9 167.71 158 182 340.79 326 352
10 340.2 327 358 680.83 661 695
11 680.95 654 710 1363.24 1332 1390
12 1363.33 1330 1399 2729.96 2696 2761
13 2729.80 2656 2793 5458.75 5391 5532
14 5459.17 5342 5587 10921.96 10796 11038
15 10921.47 10774 11076 21843.05 21684 21991
16 21845.28 21618 22075 43687.95 43460 43912
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Table 4. Period and linear complexity statistics for m-LFSRs filtered by the MBSG

L Period Average LC Minimal LC Maximal LC

8 85 84, 25 77 85
9 171 170, 46 165 171
10 341 339, 92 326 341
11 683 683 683 683
12 1365 1362, 53 1347 1365
13 2731 2731 2731 2731
14 5461 5461 5461 5461
15 10923 10923 10923 10923
16 21845 21844, 35 21833 21845
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Abstract. The bit-search generator (BSG) was proposed in 2004 and
can be seen as a variant of the shrinking and self-shrinking generators.
It has the advantage that it works at rate 1/3 using only one LFSR
and some selection logic. We present various attacks on the BSG based
on the fact that the output sequence can be uniquely defined by the
differential of the input sequence. By knowing only a small part of the
output sequence we can reconstruct the key with complexity O(L320.5L).
This complexity can be significantly reduced in a data/time tradeoff
manner to achieve a complexity of O(L320.27L) if we have O(20.27L) of
keystream. We also propose a distinguishing attack that can be very
efficient if the feedback polynomial is not carefully chosen.

1 Introduction

Lately, we have seen many new proposals for stream ciphers. The aim of binary
additive stream cipher is to produce a random looking sequence and then xor
this sequence with the plaintext sequence to produce the ciphertext. There are
several possible approaches when designing a stream cipher. A Linear Feedback
Shift Register (LFSR) with primitive feedback polynomial generates sequences
that possess many of the properties which we would expect from a random
sequence. Because of this it is common to use an LFSR as a building block
in a stream cipher. The problem with just using an LFSR is that any output
bit of the LFSR can be written as a linear function in the initial state bits.
This problem is solved by introducing some nonlinearity into the cipher. There
are many ways to do this and some classical approaches include letting the
output of several LFSRs or some state bits of one LFSR serve as input to a
nonlinear Boolean function. Another common way to introduce nonlinearity is to,
by some algorithm, decimate the LFSR output sequence in some irregular way.
Two well known keystream generators based on this principle are the shrinking
generator [1] and the self-shrinking generator [16]. Another generator related to
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these is the alternating step generator [11]. This generator uses one LFSR to
decide the clocking of two other LFSRs.

The bit-search generator (BSG) is a keystream generator intended to be used
as a stream cipher. It was introduced in 2004 by Gouget and Sibert [10] and the
construction is similar to the generators mentioned above. The output of the BSG
is produced by a simple algorithm, taking a pseudorandom sequence as input.

In this paper we investigate some possible attacks on the bit-search generator.
Throughout the paper we assume that the pseudorandom sequence is generated
by a maximum length LFSR and that the (primitive) feedback polynomial is
known to the attacker.

We give an alternative description of the BSG based on the differential of
the input sequence and then we describe a simple but efficient algorithm to re-
construct the differential sequence with knowledge of only a few keystream bits.
By reconstructing the differential sequence we can reconstruct the original input
sequence and also the key. This attack works regardless of the form of the feed-
back polynomial and has complexity O(L320.5L). If we know more keystream bits
we show that the complexity will be significantly decreased. More specifically,
with O(20.27L) bits of keystream we can mount the attack with time complexity
O(L320.27L) according to our simulations. Moreover, we describe the basis for
a distinguishing attack on the BSG. This attack can be made very efficient if
the feedback polynomial is of low weight or if it is possible to find a low degree
multiple of the feedback polynomial with low weight.

The outline of the paper is the following. In Section 2 we describe the BSG
and we compare the construction with similar generators. Then, in Section 3 we
present an attack that reconstructs the input sequence to the BSG algorithm.
By doing this we can recover the initial state of the LFSR. Section 4 gives the
framework for a possible distinguishing attack and in Section 5 we summarize
some previous attacks on the shrinking, self-shrinking and the alternating step
generators. We also compare these attacks with the attacks on the BSG shown
in this paper. In Section 6 we give our conclusions.

2 Description of the Bit-Search Generator

In this section we describe the bit-search generator in two different but equiva-
lent ways. First we give the original description that uses a sequence s as input,
as presented in [10]. Then we give an alternative description that uses the dif-
ferential sequence d of s as input. We also compare the construction to similar
keystream generators.

LFSR � �Selection
Logic

si zi

Fig. 1. Block model of the bit-search generator
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Table 1. Comparison between the BSG and some well known generators

Generator Number of LFSRs needed Rate

Alternating Step 3 1

Shrinking 2 1/2

Self-Shrinking 1 1/4

BSG 1 1/3

The principle of the BSG is very simple. It consists only of an LFSR and
some small selection logic, see Fig. 1. Consider a sequence s = (s0, s1, s2 . . .)
generated by the LFSR. The output sequence z = (z0, z1, z2 . . .) is constructed
from s by first letting b = s0 be the first bit to search for. If the search ends
immediately, i.e. s1 = b = s0 we output 0, otherwise we continue to search the
sequence s until the bit we search for is found. When the correct bit is found
we output 1 and we let the following bit be the next to search for. An output
bit is produced after 2 input bits with probability 1/2, after 3 input bits with
probability 1/4 etc. In general, an output bit is produced after i + 1 input bits
with probability 2−i so the average number of input bits needed to produce one
output bit is

∑∞
i=0(i + 1) · 2−i = 3. This shows that the rate of the BSG is

asymptotically 1/3.
To motivate why this generator is interesting we compare it to some other

well known generators based on the idea of only using LFSRs and some se-
lection logic. We base the comparison on the number of LFSRs used and the
rate of the cipher. As we can see in Table 1 the BSG has lower rate than the
alternating step generator and the shrinking generator but it uses only one
LFSR. The self-shrinking generator has also only one LFSR but it has lower
rate.

We now consider the differential sequence d of s. The differential sequence
is defined as di = si ⊕ si+1. If the sequence s is generated by an LFSR it is
well known, see e.g. [14], that the differential sequence can be generated by the
same LFSR. The two sequences differ only by some shift. When reconstructing
s from d we need to guess the first bit in s, then the remaining bits are uniquely
determined from d.

The output of the BSG can be uniquely described by knowledge of the dif-
ferential sequence. Hence, if we can reconstruct the differential sequence we can
predict the future outputs uniquely and we can also recover the key used to ini-
tialize the LFSR. The BSG operates on the differential sequence in the following
way. If di = 1 we know that si �= si+1 so we will output 1. Then we search
the sequence d until we find the next dj = 1. If instead di = 0 we know that
we have two consecutive bits which are the same, hence we output 0. Now we
know we have found the bit we search for in the original BSG and we skip the
next bit since it does not matter which value it has. It is clear that the output
of the BSG can be generated from either the original LFSR sequence or from
the differential sequence. The following is an example of a sequence s and the
corresponding differential sequence d. Applying the algorithms, we can see that
they produce the same output.
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Output generated from s

i = –1; j = –1;
while (1)

i++; j++;
b = s[i];
i++;
if (s[i] == b) z[j] = 0;
else z[j] = 1;
while (s[i] != b) i++;

Output generated from d

i = 0; j = 0;
while (1)

z[j] = d[i];
if (d[i] == 1)

i++;
while (d[i] == 0) i++;

i += 2;
j++;

Fig. 2. The original BSG algorithm and an equivalent algorithm using the differential
sequence d of s as input

s = 010100100111011101011010 . . . ⇒ z = 110010101 . . .
d = 11110110100110011110111 . . . ⇒ z = 110010101 . . .

A summary of the two algorithms can be found in Fig. 2.

3 Reconstructing the Input Sequence

In this section we will describe a known plaintext attack that tries to reconstruct
the differential sequence from the output sequence. In our attack we assume that
we have an LFSR generating the pseudorandom sequence and that the feedback
polynomial of the LFSR is known to the attacker. If we have an LFSR of length
L we need to guess L bits to be able to find a candidate initial state of the
LFSR. Each bit can be written as a linear function of the initial state bits and
by clocking the LFSR with a candidate initial state we can see if the candidate
output equals the given output.

It follows from the algorithm given in Fig. 2 that zi = 0 corresponds to a 0
followed by an unknown value in the differential sequence. It is also clear that
zi = 1 corresponds to a 1 followed by j ≥ 0 0s followed by a single 1 and an
unknown value. In short,

zi = 0 ⇒ (0,−)
zi = 1 ⇒ (1, 0j , 1,−)

The probability of having j zeros is 2−j−1, i.e. zi = 1 corresponds to (1,1,–) with
probability 1/2, (1,0,1,–) with probability 1/4, (1,0,0,1,–) with probability 1/8
etc. The expected number of inserted zeros is

∑∞
i=0 i · 2−i−1 = 1.

In the following we will denote by a the number of ones that we observe
in an output sequence, b is the number of zeros in the output sequence and k
is the number of zeros that are inserted in the candidate differential sequence,
stemming from a set of a ones in the output sequence.
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Search algorithm

Pick a part z′ of z s.t. 2a+b=L;
k=0;
while (k <= kmax)

Try all ways to insert k zeros in z′;
Delete last bit in z′;
if (Deleted bit == 0) k = k + 1;
else k = k + 2;

Fig. 3. The algorithm used to find the correct differential sequence

Now, assume that we have a set of a ones. There is one way to insert a total of
k = 0 zeros and this happens with probability 2−a. The number of ways to insert
a total of k = 1 zero is

(
a
1

)
and each has a probability of 2−a+1 ·2−2 = 2−a−1. The

number of ways to insert k zeros into a set consisting of a ones is a well known
combinatorial problem and can be written as

(
a−1+k

k

)
, Hence, the probability of

having a total of k zeros inserted will be(
a− 1 + k

k

)
2−a−k.

We construct a simple search algorithm based on these observations. The
easiest way to find the correct differential sequence is to just guess the number
of inserted zeros.

When we try to insert k zeros we need to look at an output sequence that
satisfies 2a + b + k = L. This is clear since every one in the output will give
us two known bits and every zero will give us one known bit in the differential
sequence. If we insert k extra zeros we will have a total of L bits which is enough
to find the initial state. This leads us immediately to the algorithm in Fig. 3.

We start by just picking a part z′ of the output sequence such that the length
of z′ satisfies 2a+ b = L. Then we insert k = 0 zeros. If this candidate is not the
correct differential sequence, we delete the last bit in z′. If a 0 is deleted we try
k = 1 next time since b← b− 1 and we still require 2a + b + k = L to hold. For
the same reason, if a 1 is deleted we try k = 2 next time. Every time k ← k + 2
we will miss some possible combinations and, hence, not the full space will be
searched.

3.1 Analysis of the Algorithm

The complexity of the algorithm and the probability of success will depend on
two factors. First, the ratio between the number of zeros and the number of ones
in the sequence. If we have found a z′ which has many more zeros than ones,
the complexity will be lower. This will also give us a higher success probability
since we will delete a 0 more often than we will delete a 1. The second factor
is the maximum number of zeros we will try to insert into the sequence before
we give up. This is the value kmax in the algorithm in Fig 3. Choosing a high
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value for kmax will increase the success probability but it will also increase the
complexity.

We consider the case when we choose a sequence z′ at random. We expect
the number of zeros in the sequence to be equal to the number of ones. We also
expect that the deleted bit is 1 every second time. Moreover, when z′ is of odd
length, we consider the pessimistic case when a = b + 1. We have the following
equations

2a + b + k = L
a = b

}
⇒ a =

⌈
L− k

3

⌉
The probability of success will be

kmax∑
k=0

(⌈L−k
3

⌉
− 1 + k⌈

L−k
3

⌉ )
2−
⌈

L−k
3

⌉
−k

and we have a total complexity of

kmax∑
k=0

(⌈L−k
3

⌉
− 1 + k⌈

L−k
3

⌉ )
.

Similar equations can easily be found also if a �= b. We choose kmax as the
smallest integer such that the probability of success is > 0.5. Focusing on the
expected case when a = b, we summarize the complexity of an attack in Table 2
with respect to the length of the LFSR (keylength). It is clear that the complexity
of the attack is very close to 20.5L tests for all cases.

Table 2. The attack complexity when the number of zeros equals the number of ones
in z′

Keylength kmax Complexity

64 19 231.74

96 27 247.50

128 36 263.96

160 44 279.82

192 52 295.71

224 61 2112.37

256 69 2128.29

We can approximate the least number of plaintext bits needed in the expected
case. With L/3 ones and L/3 zeros we will have knowledge of at least 2 · L/3 +
L/3 = L bits in the input sequence. With about 20.5L different sequences to test
we need to compare the candidate sequence with an extra 0.5L bits to see if the
candidate is correct. Hence, by knowing about 2L/3 + L/2 = 7L/6 bits of the
keystream sequence we can reconstruct the input sequence with a complexity of
O(20.5L) tests. In the 128 bit case we need approximately 150 bits of keystream.
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3.2 A Data/Time Tradeoff

As mentioned in the previous section, it is clear that the complexity of the
attack depends on the number of ones that we observe in the keystream. With a
large amount of keystream we can find sequences with few ones and, hence, the
attack complexity is decreased. This provides a data/time tradeoff in the attack.
Assume that we want to find a part z′ of z that contains at most a ones and
at least b zeros, where b > a. Looking at a random sequence of a + b bits, the
probability that we find a sequence with at most a ones is given by

P (#ones ≤ a) =
∑a

i=0

(
a+b

i

)
2a+b

using the approximation that sequences are independent. The number of tries
needed before a desired sequence is found is geometrically distributed with an
expected value of

2a+b∑a
i=0

(
a+b

i

) =
2L−a∑a

i=0

(
L−a

i

) .
In the equality we use 2a + b = L. Table 3 demonstrates this data/time tradeoff
for the case when L = 128, i.e. the keylength is 128 bits. Simulations show that
the time complexity and the amount of keystream needed intersect at around
20.27L for all L between 64 and 1024 bits.

Table 3. The data/time tradeoff based on the number of ones and zeros in z′ using a
128 bit key

Number of zeros (b)

and ones (a) in z′ kmax Complexity Keystream

b = 2a 29 251.09 210.46

b = 3a 24 242.21 221.59

b = 4a 21 236.31 231.32

b = 5a 19 232.14 239.75

b = 6a 17 228.46 248.70

The complexities in Table 2 and Table 3 are given as the number of tests. To
test if a candidate sequence is correct, a constant time is needed. This time can
be divided into two parts. First we need to find the initial state of the LFSR by
solving a system of L unknowns and L equations. This system can be solved in
time Lω. In theory ω ≤ 2.376, see [2], but the constant factor in this algorithm
is expected to be very big. The fastest practical algorithm is Strassen’s algo-
rithm [19], which requires about 7 · Llog2 7 operations. For simplicity we write
the time complexity for this step as L3. We also need to clock the LFSR a
sufficient number of times to compare our candidate output sequence with the
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observed output sequence. This second constant would also be needed in an ex-
haustive key search. Thus, the total time complexity for our key recovery attack
is O(L320.5L) knowing only 7L/6 bits of the keystream. With the data/time
tradeoff the complexity of the attack is O(L320.27L) if we know O(20.27L) bits of
the keystream. Note that these complexities are not formally derived but sim-
ulations show that they are valid (at least) up to keylengths of 1024 bits. The
memory complexity of the attack is limited to the memory needed to solve the
system of linear equations.

4 Distinguishing Attack

In this section we describe a possible distinguishing attack on the BSG. A distin-
guishing attack does not try to recover the key or any part of the input sequence.
Instead, the aim is to distinguish the keystream from a purely random sequence.
In the attack we assume that we have found a multiple of the feedback polyno-
mial that is of weight w and degree h. Any multiple of a feedback polynomial will
produce the same output sequence as the original polynomial. The well known
fast correlation attack, see [15], depends on the existence of low weight multi-
ples of modest degree of the LFSR feedback polynomial. Due to the importance
of finding low weight multiples this subject has been studied in several papers,
see [6, 20]. In [6], Golić estimates that the critical degree when polynomial multi-
ples of weight w start to appear is (w−1)!1/(w−1)2L/(w−1), where L is the degree
of the polynomial. Hence, a feedback polynomial of degree L is expected to have
a multiple of weight w that is of degree approximately 2

L
w−1 . Now, assume that

we have found a multiple of weight w that is of degree h.
The linear recurrence of the LFSR can be written as

0 = di + di+τ1 + di+τ2 + . . . + di+τw−1 (1)

where τw−1 = h and τj < τk, j < k. A zero in the output sequence z corresponds
to a zero in the differential sequence and a one in the output corresponds to a
one in the differential sequence. Since the BSG has rate 1/3 we can consider the
following sums of symbols from the output sequence

Bi = zi + zi+
τ1
3

+ zi+
τ2
3

+ . . . + zi+
τw−1

3
. (2)

We know that Bi = 0 if we have the correct synchronization (di+τ1 appears
as zi+

τ1
3

, di+τ2 appears as zi+
τ2
3

etc.) in the positions. We give an approximate
value of the probability that we have synchronization in one position. With
a multiple of low weight and high degree h the distance between zi and any
z

i+
τj
3

is in the order of h. Using the central limit theorem we say that the total
number of inserted zeros after h outputs is normally distributed with standard
deviation σ ·

√
h, where σ is the standard deviation for the number of inserted

zeros after one output. Now, we approximate the probability that we have the
correct synchronization as h− 1

2 .
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Hence, the probability that z
i+

τj
3

, 1 ≤ j ≤ w − 1 is synchronized with zi is

approximately h− 1
2 . The probability that all w − 1 positions are synchronized,

denoted P (sync), is

P (sync) = (h− 1
2 )w−1 = h−w−1

2

and the probability that Bi = 0 can be calculated as

P (Bi = 0) = P (Bi = 0 | sync) · P (sync)
+ P (Bi = 0 | no sync) · P (no sync)

= 1 · h−w−1
2 + 1/2 · (1− h−w−1

2 )
= 1/2 + 1/2 · h−w−1

2 .

(3)

With a bias of h−w−1
2 we will need about hw−1 samples of the output sequence

to distinguish it from random. The complexity of the distinguishing attack de-
pends on the degree of the multiple and if the degree is the expected degree,
h = 2

L
w−1 , our distinguisher needs about 2L samples. However, if the feedback

polynomial is not carefully chosen and we instead can find a multiple of low
weight that is of much lower degree than expected, then the attack can be very
efficient. This distinguisher can be improved in several ways. One way is to
consider blocks of bits instead of individual bits.

We can consider a feedback polynomial with h << 2
L

w−1 as being a weak
polynomial and ciphers using a weak polynomial can be efficiently attacked.
Another class of weak feedback polynomials and an attack on these can be
found in [5]. One can do a similar attack on the bit-search generator.

The values in the previous attack are approximated but for large h they
are quite accurate. In the case where the feedback polynomial itself is of low
weight, the values are not very accurate. We now describe how this attack can
be mounted if the LFSR uses a feedback polynomial of some low weight w.
Equation (1) will always hold for the differential sequence. To find the optimum
guess for z

i+
τj
3

, 1 ≤ j ≤ w − 1 in (2) we use the generating function for the
probability of the number of clockings after λ outputs. Recall that the BSG
will produce a keystream bit after two clockings with probability 1/2, after 3
clockings with probability 1/4 etc. The generating function can be written as( ∞∑

n=0

1
2n

zn+1

)λ

. (4)

The coefficient of zn is the probability that the LFSR has been clocked n times
when the BSG has generated λ keystream bits.

By choosing the λj for which the coefficient of zτj is highest we can determine
which guess will give us the best probability of synchronization and we will also
get the exact probability of a correct guess. We denote the probability that we
guess λj correctly by pλj

. If pλj
, 1 ≤ j ≤ w− 1 are independent the probability
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that Bi = 0 can be written, similarly to (3), as

P (Bi = 0) = 1 ·
∏w−1

j=1 pλj
+ 1/2 · (1−

∏w−1
j=1 pλj

)
= 1/2 + 1/2 ·

∏w−1
j=1 pλj

.

With a bias of
∏w−1

j=1 pλj
we need about

1∏w−1
j=1 p2

λj

samples for a successful distinguishing attack. We end this section with a small
numerical example showing the performance of this distinguisher on a low weight
feedback polynomial.

Example 1. Consider the weight 5 primitive feedback polynomial 1+x29 +x66 +
x95 + x128. Write the linear recurrence in the differential sequence as

0 = di + di+29 + di+66 + di+95 + di+128.

Using (4) we find that the highest coefficient for z29, z66, z95 and z128 is achieved
when we have λ1 = 10, λ2 = 22, λ3 = 32 and λ4 = 43 respectively. The best
possible approximation of (2) is then Bi = zi +zi+10 +zi+22 +zi+32 +zi+43. The
probability that each of these terms are synchronized with zi is the coefficient
for each term in (4), i.e.,

pλ1 = 2−3.43, pλ2 = 2−4.06, pλ3 = 2−4.31, pλ4 = 2−4.53.

This gives us a total bias of
∏w−1

j=1 pλj
= 2−16.33 and, hence, our distinguisher

needs approximately 232.66 bits to succeed.

This shows that low weight feedback polynomials can be easily and
efficiently attacked. Note that the attack described above can be further
improved, using slightly more advanced techniques.

5 Comparison with the Alternating Step, Shrinking and
the Self-shrinking Generator

The shrinking generator, the self-shrinking generator and the alternating step
generator are similar to the BSG in that they only contain one or more LFSRs
and some selection logic. There is no Boolean function used as a nonlinear com-
biner or as a nonlinear filter. In section 2 we compared the number of LFSRs
used in and the rate of these generators. Here we summarize a small selection of
the attacks proposed for the 3 well known generators and we compare them to
our attacks on the BSG.
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The alternating step generator is the oldest generator and based on 3 LF-
SRs in such a way that L3 controls the clocking of L1 and L2. In the original
paper [11] a divide-and-conquer attack with complexity O(2L3+2 log2 min(L1,L2))
was shown. 1997, in [8], Golić and Menicocci showed a correlation attack with
complexity O(2L1+L2+2 log2(L1+L2)) and the year after [9] they improved this
attack significantly to O(2max(L1,L2)+2 log2 max(L1,L2)).

The shrinking generator uses two LFSRs, denoted A and S. The sequence
generated by S is used to select bits in the A-sequence. These selected bits are the
output bits. In the original paper [1], an attack with known feedback polynomials
was proposed that has complexity O(2LS · L3

A). In 1998, Simpson, Golić and
Dawson [18] presented a correlation attack that can recover the initial state of
A with complexity O(2LA ·L2

A) using about 20 ·LA bits. In 1998, Johansson [12]
gave another correlation attack that is based on finding weak sequences. The
complexity of this attack is better than previous attacks but it is still exponential
in |A|. Distinguishing attacks on the shrinking generator have also been presented
in [3, 7].

The BSG is probably most related to the self-shrinking generator since they
both consist of only one LFSR. Because of this the attacks on the self-shrinking
generator are easy to compare to the attacks on the BSG. Several key recov-
ery attacks have been proposed for the self-shrinking generator. In the origi-
nal paper [16] a key recovery attack was proposed that has average complex-
ity O(20.75L). In 1996, Mihaljevic [17] presented an attack that has a com-
plexity that varies between O(20.5L) and O(20.75L) but the required length
of the keystream varies between O(20.5L) and O(20.25L) respectively. In 2001,
Zenner, Krause and Lucks [21] described an attack that uses a search tree.
This attack needs very few keystream bits and has complexity O(20.69L). The
attack was later improved by Krause [13] to a complexity of O(20.66L). The
problem with these two attacks is that they require a large amount of mem-
ory. In 2003, Ekdahl, Johansson and Meier [4] presented an attack that is
much more efficient than the previous attacks if the polynomial is of a certain
form.

Our attack that reconstructs the input sequence of the bit-search generator
is equivalent to a key recovery attack. We can reconstruct the initial state of the
LFSR that produces the differential sequence d. From this sequence we can recon-
struct the original sequence. We propose an attack with complexity O(L320.5L)
that uses very few keystream bits. Knowing more keystream bits will reduce the
complexity significantly. Using a data/time tradeoff we show that we can mount
the attack using O(20.27L) keystream bits with a time complexity of O(L320.27L).
Finally, we suggest a distinguishing attack that can be very efficient if the feed-
back polynomial is not carefully chosen. It has the complexity O(hw−1) for a
degree h multiple of weight w. The framework of this distinguishing attack can
be used also to attack the other generators. Hence, for all the generators consid-
ered here it is important to choose a feedback polynomial that has no low weight
multiples of degree much lower than expected.
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Finally, we would like to mention that the BSG, as well as the other generators
in this section, can be vulnerable to various side channel attacks. Though, we
have not pursued any work in this direction.

6 Conclusion

The bit-search generator, recently proposed by Gouget and Sibert has been con-
sidered and an equivalent description based on the differential of the input se-
quence has been given. We propose an efficient attack that recovers the differen-
tial sequence, and hence, the key. The construction as well as the security of the
generator has been compared to similar generators. The self-shrinking generator
is very similar to the BSG and we find that the key recovery attacks presented
here are more efficient than any known key recovery attack on the self-shrinking
generator. The basis for a distinguishing attack is also described and we show
that if the feedback polynomial is not carefully chosen, the BSG may be prone
to efficient distinguishing attacks.
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18. L. Simpson, J. D. Golić and E. Dawson. A Probabilistic Correlation Attack on the
Shrinking Generator. In C. Boyd and E. Dawson, editors, Information security and
privacy ’98, volume 1438 of Lecture Notes in Computer Science, pages 147–158,
Springer-Verlag, 1998.

19. V. Strassen. Gaussian Elimination is Not Optimal, Numerische Mathematik, vol.

13, pages 354-356, 1969.
20. D. Wagner. A Generalized Birthday Problem. In M. Yung, editor, Advances in

Cryptology–CRYPT0 2002, volume 2442 of Lecture Notes in Computer Science,
pages 288–303, Springer-Verlag, 2002.

21. E. Zenner, M. Krause and S. Lucks. Improved Cryptanalysis of the Self-Shrinking
Generator. In ACIPS’2001, Volume 2119 of Lecture Notes in Computer Science,
pages 21–35. Springer-Verlag, 2001.
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Abstract. 1This paper presents a new hash function design, which is
different from the popular designs of the MD4-family. Seen in the light
of recent attacks on MD4, MD5, SHA-0, SHA-1, and on RIPEMD, there
is a need to consider other hash function design strategies. The paper
presents also a concrete hash function design named SMASH. One ver-
sion has a hash code of 256 bits and appears to be at least as fast as
SHA-256.

1 Introduction

A cryptographic hash function takes as input a binary string of arbitrary length
and returns a binary string of a fixed length. Hash functions which satisfy some
security properties are widely used in cryptographic applications such as digital
signatures, password protection schemes, and conventional message authentica-
tion. In the following let H : {0, 1}∗ → {0, 1}n denote a hash function which
returns a string of length n. Most hash functions in use today are so-called it-
erated hash functions, based on iterating a compression function. Examples of
iterated hash functions are MD4[19], MD5[20], SHA[13] and RIPEMD-160[7].
For a cryptographic hash function H, one is interested in the complexity of the
following attacks[16]:

– Collision: find x and x′ such that x′ �= x and H(x) = H(x′),
– 2nd preimage: given an x and y = H(x) find x′ �= x such that H(x′) = y,
– Preimage: given y = H(x), find x′ such that H(x′) = y.

Clearly the existence of a 2nd preimage implies the existence of a collision. In
a brute-force attack preimages and 2nd preimages can be found after about 2n

applications of H, and a collision can be found after about 2n/2 applications of
H. It is usually the goal in the design of a cryptographic hash function that no
attacks perform better than the brute-force attacks.

Often hash functions define an initial value, iv. The hash is then denoted
H(iv, ·) to explicitly denote the dependency on the iv. Attacks like the above,
but where the attacker is free to choose the value(s) of the iv are called pseudo-
attacks. The following assumptions are well-known and widely used in cryptology
(where ⊕ is the exclusive-or operation).

1 After the presentation of SMASH at FSE 2005, the proposal was broken[15].

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 228–242, 2005.
c© International Association for Cryptologic Research 2005
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Assumption 1. Let g : {0, 1}n → {0, 1}n be a randomly chosen mapping. Then
the complexities of finding a collision, a 2nd preimage and a preimage are of the
order 2n/2, 2n, respectively 2n. Let f : {0, 1}n → {0, 1}n be a randomly chosen,
bijective mapping. Define the function h : {0, 1}n → {0, 1}n by h(x) = f(x)⊕ x
for all x. It is assumed that the expected complexity of finding collisions, 2nd
preimages and preimages for h is roughly the same as for g.

Most popular hash functions are based on iterating a compression function,
which processes a fixed number of bits. The message to be hashed is split into
blocks of a certain length where the last block is possibly padded with extra
bits. Let h : {0, 1}n × {0, 1}� → {0, 1}n denote the compression function, where
n and � are positive integers. Let m = m0 | m1 | . . . | mt be the message to be
hashed, where |mi| = � for 0 ≤ i ≤ t. Then the hash value is taken as ht, where

hi = h(hi−1,mi),

for h0 = iv an initial, fixed value. The values {hi} are called the chaining vari-
ables. If a message m cannot be split into blocks of equal length n, i.e., if the
last block consists of less than n bits, then a collision-free padding rule is used.
If x and y are two arbitrary different strings, then it must hold that the corre-
sponding padded strings are different.

For iterated hash functions the MD-strengthening (after Merkle [11] and
Damg̊ard [6]) is as follows. One fixes the iv of the hash function and appends to
a message some additional, fixed number of blocks at the end of the input string
containing the length of the original message. Then it can be shown that at-
tacks on the resulting hash function implies a similar attack on the compression
function.

There has been much progress in recent years in cryptanalysis of iterated hash
functions and attacks have been reported on MD4, MD5, SHA-0, reduced SHA-
1 and RIPEMD[2, 18, 21]. For these hash functions and for most other popular
iterated hash functions, the compression function takes a rather long message
and compresses this together with a shorter chaining variable (containing the
internal state) to a new value of the chaining variable. E.g., in SHA-0 and SHA-
1 the message is 512 bits and the chaining variable 160 bits. One way of viewing
this is, that the compression function defines 2160 functions from 512 bits to 160
bits (from message to output), but at the same time it defines 2512 functions
(bijections) from 160 bits to 160 bits (from chaining variable to output). If just
a few of these functions are cryptographically weak, this could give an attacker
the open door for an attack.

In this paper we consider compression functions built from one, fixed bijective
mapping f : {0, 1}n → {0, 1}n. A related but different approach is in [17]. In our
model this leads to hash functions where the compression functions themselves
are not cryptographically strong, thus a result similar to the one by Merkle and
Damg̊ard, cf. above, cannot be proved. However, the constructions have other
advantages and it is conjectured that the resulting hash functions are not easy
to break, despite the fact that the compression functions are “weak”.
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2 Compression Functions from One Bijective Mapping

Our approach is to build an iterated hash function H : {0, 1}∗ → {0, 1}n from
one fixed, bijective mapping f : {0, 1}n → {0, 1}n. If this bijection is chosen
carefully, the goal or hope is that such a hashing construction is hard to attack.
Such constructions could potentially be built from using a block cipher with a
fixed value of the key.

2.1 Motivation for Design

Consider iterated hash functions with compression functions h : {0, 1}n×{0, 1}n

→ {0, 1}n for which the computation of chaining variables is as follows: hi =
h(A,B) = f(A) ⊕ B. Here f : {0, 1}n → {0, 1}n is a bijective mapping and
the inverse of f is assumed to be as easy to compute as f itself. A and B are
variables which depend on the chaining variable hi−1 and on the message block
mi. Ideally we would like to have an efficient (easy-to-compute) transformation
e(hi−1,mi) = (A,B). We do not want e to cause collisions so we require that it is
invertible. Since we want e to be an invertible function (very) easy to compute,
we shall also assume that the inverse of e is easy to compute.

For such compression functions it is possible to invert also h. Given an hi,
simply choose a random value of B, compute A = f−1(B⊕hi), then by inverting
e, find (hi−1,mi) which hash to hi. We shall assume that the complexity of one
application of e is small compared to one application of f and thus that inverting
h takes roughly time one, where one unit is one application of f (or its inverse). It
follows that it is easy to find both collisions and preimages for the compression
function. Next we examine what this means for similar attacks on the hash
functions (where a fixed value of h0 is assumed) induced by these compression
functions.

Inverting h as above enables a (2nd) preimage attack on H by a meet-in-
the-middle approach[10] of complexity about 2n/2+1, i.e., compute the values
of “hi−1” for 2n/2 messages (of each i − 1 blocks) and store them. For a fixed
value of hi choose 2n/2 random values of A,B (as above), which yield 2n/2

“random” values of “hi−1”. The birthday paradox gives the (2nd) preimage. If
f is a truly randomly chosen bijection on n bits (which is the aim for it to be)
then this (2nd) preimage attack is always possible on the constructions we are
considering. So the best we can do regarding (2nd) preimages is try to make
sure that the attacker does not have full control over the message blocks when
inverting h, in which case such preimages may be of lesser use in practice. Thus,
we want to avoid that given (any) hi−1,mi (and thereby hi) and m′

i, it is easy
to find h′

i−1 such that (hi−1,mi) �= (h′
i−1,m

′
i) and hi = h′

i, since in this case one
can find preimages for the hash function for meaningful messages also in time
roughly 2n/2.

This meet-in-the-middle attack is “irrelevant” regarding collisions, since the
complexity of a brute-force attack is 2n/2 regardless of the nature of the com-
pression function. For collisions it is important that when inverting h the at-
tacker does not have full control over the chaining variable(s) hi−1. If given
(any) hi−1, h

′
i−1, it is easy to find mi,m

′
i such that (hi−1,mi) �= (h′

i−1,m
′
i) and
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Table 1. Six compression functions

Scheme Attack I Attack II

hi = f(hi−1) ⊕ mi easy easy
hi = f(mi) ⊕ hi−1 easy easy
hi = f(hi−1) ⊕ mi ⊕ hi−1 easy ?
hi = f(mi) ⊕ mi ⊕ hi−1 ? easy
hi = f(hi−1 ⊕ mi) ⊕ hi−1 easy ?
hi = f(hi−1 ⊕ mi) ⊕ mi ? easy

hi = h′
i then one can find a collision easily also for the hash function. Sim-

ply choose two messages m = m1, . . . , mi−1 and m′ = m′
1, . . . ,m

′
i−1 (e.g., with

hi−1 �= h′
i−1), where i ≥ 2, then the two i-block messages M = m | mi and

M ′ = m′ | m′
i yield a collision for the hash function.

The above is the motivation for examining the compression functions with
respect to the following two attacks:

– I: Given hi−1, h
′
i−1 find mi,m

′
i such that (hi−1,mi) �= (h′

i−1,m
′
i) and hi =

h′
i.

– II: Given hi−1,mi and m′
i, find h′

i−1 such that (hi−1,mi) �= (h′
i−1,m

′
i) and

hi = h′
i.

Consider first the simple e-functions where A,B ∈ {mi, hi−1,mi ⊕ hi−1}. With
the requirements for e above, this yields six possibilities for the compression
function, see the first column in Table 1. It follows that in all six cases either
the first or the second attack is easy to implement, in some cases both. So one
needs to consider more complex e-functions to achieve better resistance against
the two attacks. There may be many possible ways to build such functions; we
believe to have found a simple one.

First we note that there is a natural one-to-one correspondence between bit
vectors of length s and elements in the finite field of 2s elements. We introduce
“multiplication by θ” as follows.

Definition 1. Consider a ∈ GF (2)s. Let θ be an element of GF (2s) such that
θ �∈ {0, 1}. Define the multiplication of a by θ as follows. View a as an element
of GF (2s), compute aθ in GF (2s), then view the result as an s-bit vector.

Let f : {0, 1}n → {0, 1}n be a bijective mapping and let ⊕ denote the exclusive-
or operation. Consider the compression function h : {0, 1}n × {0, 1}n → {0, 1}n:

h(hi−1,mi) = hi = f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi, (1)

where θ is as in Definition 1. Multiplication with certain values of θ can be done
very efficiently as we shall demonstrate later. Consider Attacks I and II from
before.

Attack I: Given hi−1 and h′
i−1 the attacker faces the task of finding mi and

m′
i such that

f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi = f(h′
i−1 ⊕m′

i)⊕ h′
i−1 ⊕ θm′

i. (2)
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Or in other words, with hi−1 ⊕ h′
i−1 = α and mi ⊕ m′

i = β one needs to
find two inputs to f of difference α⊕ β which yield outputs of difference α⊕ θβ
for a fixed value of θ. But if f is “as good as” a randomly chosen mapping, the
attacker has no control over the relation between the outputs for two different
inputs to f , and he has no better approach than the birthday attack. Note that
with mi⊕m′

i = hi−1⊕h′
i−1 = α �= 0 one never has a collision for h, since in this

case the difference in the outputs of f is zero and the difference in the outputs
of h is (θ + 1)α �= 0.

Attack II: For fixed values of hi−1,mi and m′
i, the attacker faces the task

of finding h′
i−1 such that Eq. 2 is satisfied. But in this case (1) has the form of

g(hi−1)⊕hi−1⊕c1, where g(x) = f(x⊕c2) and where c1, c2 are constants. Thus,
under Assumption 1 (with sufficiently large n) attacks using a fixed value of mi

seem to be hard to mount.
Although the two attacks above do not seem to be easy to do for the proposed

compression function, it is clear that there are properties of it which are not
typical for compression functions. These are already discussed above but we
highlight them here again.

Inversion: (1) can be inverted. Given hi, choose an arbitrary value of a, compute
b = f−1(hi⊕a) = hi−1⊕mi, then solve for hi−1 and mi. With θ as in Definition 1
this can be accomplished by solving

(a b) = (hi−1 mi)
(

1 1
θ 1

)
which always succeeds, since θ �= 1.

Forward prediction: Let hi−1 and h′
i−1 be two inputs to (1) where α = hi−1⊕

h′
i−1. Choose a value for mi and compute m′

i = mi ⊕ α. Then

hi ⊕ h′
i = f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi ⊕ f(h′

i−1 ⊕m′
i)⊕ h′

i−1 ⊕ θm′
i

= θα⊕ α.

The following is a list of potential problems of hash functions based on the
proposed compression function.

1. Collisions for the compression function.
2. Pseudo (2nd) preimages for the hash function.
3. (2nd) preimages for the hash function in time roughly 2n/2.
4. Non-random, predictable properties for the compression function.

Ad 1: It is easy to find collisions for the compression function, so it is not possible
to prove a result similar to that of Merkle and Damg̊ard, cf., the introduction.
However the simple approach, presented above, does not give the attacker any
control over the values of hi−1 and h′

i−1 and it does not appear to be directly
useful in attempts to find a collision for the hash function (with a fixed iv).
Ad 2: Since h can be inverted it is trivial to find a (2nd) message and an ĩv which
is hashed to a given hash value. However, this approach given hi does not give
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an attacker control over the value of hi−1 and this approach will not directly
lead to (2nd) preimages for the hash function (with a fixed iv). Moreover the
attacker has no control over mi.
Ad 3: Let there be given a hash value and an iv. Then since the compression
function is easily inverted, it was shown that (2nd) preimages can be found in
time roughly 2n/2 using a meet-in-the-middle attack. One can argue that this
is a weakness, however since for any hash function of size n there is a collision
attack of complexity 2n/2 based on the birthday paradox, one can also argue
that if this level of security is too low, then a hash function with a larger hash
result should be used anyway.
Ad 4: Consider the “Forward prediction” property above with some α �= 0. It fol-
lows that given the difference in two chaining variables one can find two message
blocks such that the values of the corresponding outputs of the compression
function is γ = α(θ + 1). This approach (alone) will never lead to a collision
since γ �= 0. Note that the approach extends to longer messages. E.g., assume
that for a pair of messages one has hi−1 ⊕ h′

i−1 = α. Then with mi+s ⊕m′
i+s =

hi−1+s⊕h′
i−1+s for s = 0, . . . , t one gets that hi+s⊕h′

i+s = α(θ+1)s+1. Note that
although α(θ+1)s+1 �= 0 for any s, one can compute a long list of (intermediate)
hash values without evaluating h. Also there are applications of hash functions
where it is assumed that the output is “pseudorandom” (e.g., HMAC[4]).

2.2 The Proposed Hash Function

To avoid some of the problems of the compression function as listed above, we
add some well-known elements in the design of the hash function. Let m be
the message to the hashed and assume that it includes padding bits and the
message length. Let m = m0,m1, . . . , mt, where each mi is of n bits. Let iv be
initial value to the hash function, compute

h0 = f(iv)⊕ iv (3)
hi = f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi for i = 1, . . . , t (4)

ht+1 = f(ht)⊕ ht (5)

As seen, we have introduced two applications of a secure compression function
based on f , namely one which from the user-selected iv computes h0 in a secure
fashion, and one which from ht computes the final hash result in a secure fashion.

It is conjectured that this hash function protects against pseudo-attacks, since
the attacker has no control over h0. Moreover because of the final application of
a secure compression function it is not possible to predict the final hash value
(using the approach of item 4 above). Also, the inclusion of the message length in
the padding bits complicates the utilization of long message attacks, e.g., using
the approach of item 4 above, see also [16, 9]. Finally, the construction com-
plicates preimage attacks, since the hash results are outputs of a (conjectured)
one-way function.

It is claimed that if f is (as good as) a randomly chosen bijective mapping on
n bits, then the complexity of the best approach for a preimage, 2nd preimage
or a collision attack on the proposed hash function is at least 2n/2.



234 L.R. Knudsen

2.3 θ = 0 and θ = 1

Consider the compression function above with θ = 0. Then

hi = f(hi−1 ⊕mi)⊕ hi−1 for i = 1, . . . , t

This variant of the compression function is easy to break. Choose two different
messages m1, . . . , mi−1 and m′

1, . . . , m
′
i−1 such that hi−1 �= h′

i−1. Choose a value
of hi = h′

i, and compute mi = f−1(hi−1 ⊕ hi) ⊕ hi−1 and m′
i = f−1(h′

i−1 ⊕
h′

i)⊕h′
i−1. Then there is a collision for the messages m1, . . . , mi and m′

1, . . . , m
′
i.

Therefore, the proposed hash function should not be used with θ = 0. With
θ = 1 it follows that the pairs (hi−1,mi) and (h′

i−1,m
′
i) collide when hi−1⊕mi =

h′
i−1 ⊕m′

i.

3 SMASH

In this section a concrete hash function proposal is presented which has been
named SMASH.2 The version presented here has a 256-bit output, hence we
refer to it as SMASH-256. Another version with a 512-bit output is named
SMASH-512. These are therefore candidate alternatives to SHA-256 and SHA-
512 [14]. The designs of SMASH-256 and SMASH-512 are very similar but where
the former works on 32-bit words and the latter on 64-bit words. We focus on
SMASH-256 next, the details of SMASH-512 is in an appendix.

3.1 SMASH-256

SMASH-256 is designed particularly for implementation on machines using a
32-bit architecture. A 256-bit string y is then represented by eight 32-bit words,
y = y7, . . . , y0. We shall refer to y7 and y0 as the most significant respectively
least significant words.

SMASH-256 takes a bit string of length less than 2128 and produces a 256-bit
hash result. The outline of the method is as follows. Let m be a u-bit message.
Apply a padding rule to m (see later), split the result into blocks of 256 bits,
m1,m2, . . . , mt and do the following:

h0 = g1(iv) = f(iv)⊕ iv (6)
hi = h(hi−1,mi) = f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi for i = 1, . . . , t (7)

ht+1 = g2(ht) = f(ht)⊕ ht, (8)

where iv is an initial value. The hash result of a message m is then defined as
Hash(iv,m) = ht+1. The subfunctions g1, g2, and f all take a 256-bit input and
produce a 256-bit output and h takes a 512-bit input and produces a 256-bit
output. g1 is called the input transformation, g2 the output transformation, h is

2 smash /smaesh/: to break (something) into small pieces by hitting, throwing, or
dropping, often noisily.
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called the compression function and f the “core” function, which is a bijective
mapping. g1 and g2 are of the same form, constructed under Assumption 1.

As a target value of the iv use the all zero 256-bit string.

Padding Rule. Let m be a t-bit message for t > 0. The padding rule is as fol-
lows: append a ’1’-bit to m, then append u ‘0’-bits, where u ≥ 0 is the minimum
integer value satisfying

(t + 1) + u ≡ 128 mod 256.

Append to this string a 128-bit string representing the binary value of t.

The Compression Function, h. The function takes two arguments of each
256 bits, hi−1 and mi. The two arguments are exclusive-ored and the result
evaluated through f . The output of f is then exclusive-ored to hi−1 and to θmi.

“Multiplication” by θ. This section outlines one method to implement the
multiplication of a particular value of θ. As already mentioned there is a natural
one-to-one correspondence between bit vectors of length 256 with elements in
the finite field GF (2256). Consider the representation of the finite field defined
via the irreducible polynomial q(θ) = θ256 ⊕ θ16 ⊕ θ3 ⊕ θ ⊕ 1 over GF (2). Then
multiplication of a 256-bit vector y by θ can be implemented with a linear shift
by one position plus an exclusive-or. Let z = θy, then

z =
{

ShiftLeft(y, 1), if msb(y) = 0
ShiftLeft(y, 1)⊕ poly1, if msb(y) = 1 ,

where poly1 is the 256-bit representation of the element θ16 ⊕ θ3 ⊕ θ ⊕ 1,
that is, eight words (of each 32 bits) where the seven most significant ones
have values zero and where the least significant word is 0001000bx in hex-
adecimal notation. In a 32-bit architecture the multiplication can be imple-
mented as follows. Let y = (y7, y6, y5, y4, y3, y2, y1, y0), where |yi| = 32, then
θy = z = (z7, z6, z5, z4, z3, z2, z1, z0), where for i = 1, . . . , 7

zi =
{

ShiftLeft(yi, 1), if msb(yi−1) = 0
ShiftLeft(yi, 1)⊕ 1, if msb(yi−1) = 1,

and where

z0 =
{

ShiftLeft(y0, 1), if msb(y7) = 0
ShiftLeft(y0, 1)⊕ 0001000bx, if msb(y7) = 1.

The Core Function, f . The core function in SMASH-256 consists of several
rounds, some called H-rounds and some called L-rounds, see Figure 1. There are
three different H-rounds. In each of them a 4×4 bijective S-box is used together
with some linear diffusion functions. The S-box is used in “bit-slice” mode, which
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H1 ◦ H3 ◦ H2 ◦ L ◦ H1 ◦ H2 ◦ H3 ◦ L ◦ H2 ◦ H1 ◦ H3 ◦ L ◦ H3 ◦ H2 ◦ H1(·)

Fig. 1. SMASH-256: Outline of f , the core function

(a7, a6, a5, a4) = Sbs(a7, a6, a5, a4)

ai+4 = ai+4 + a<<ri
i for i = 0, . . . , 3

(a3, a2, a1, a0) = Sbs(a3, a2, a1, a0)

ai = ai + a
<<ri+4
i+4 for i = 0, . . . , 3

(a7, a6, a5, a4) = Sbs(a7, a6, a5, a4)

ai+4 = ai+4 + a
<<ri+8
i for i = 0, . . . , 3

(a3, a2, a1, a0) = Sbs(a3, a2, a1, a0)

ai = ai + a
<<ri+12
i+4 for i = 0, . . . , 3,

Fig. 2. SMASH-256: Outline of an H-round

was used also in the block cipher designs Three-way[5] and Serpent[3]. In the fol-
lowing let a = (a7, a6, a5, a4, a3, a2, a1, a0) be the 256-bit input to an H-round,
where each ai is of 32 bits. The outline of all H-rounds is the same, see Fig-
ure 2, where a<<r is the word a rotated r positions to the left. (x, y, z, w) =
Sbs(x, y, z, w) means that for all i = 0, . . . , 31, the four ith bits from x, y, z, w
are evaluated through a 4-bit bijective S-box (Sbs is short for S-box bit-slice) us-
ing the convention that the bit from x is the most significant bit. In one H-round
the same particular S-box is used in all four bitslice applications. The differences
between H1, H2, and H3 are in the S-box used and in the rotations used. For
Hi the S-box used is Si, and the rotations are Ri, see Figures 3 and 4.

The L-round (there is only one) is defined as in Figure 5, where ShiftLeft(x, 8)
is the 32-bit quantity x shifted eight positions to the left and ShiftRight(x, 8) is
x shifted eight positions to the right.

3.2 Some Ideas Behind the Design

In this section some further details of the design of the core function of SMASH-
256 are explained. Let a = (a7, a6, a5, a4, a3, a2, a1, a0) be a 256-bit variable,
where the ais are of 32 bits each. a represents the internal state of the compres-

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

S1 : 6 13 12 7 15 1 3 10 8 11 5 0 2 4 14 9
S2 : 1 11 6 0 14 13 5 10 12 2 9 7 3 8 15 4
S3 : 4 2 9 12 8 1 14 7 15 5 0 11 6 10 3 13

Fig. 3. The SMASH-256 S-boxes
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r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

R1 : 19 18 17 7 1 7 26 20 0 16 20 5 28 2 20 4
R2 : 22 29 12 4 18 2 13 29 26 20 16 29 18 4 10 9
R3 : 4 21 19 5 24 20 12 16 14 30 3 4 23 15 13 12

Fig. 4. The SMASH-256 rotations

a3 = a3 ⊕ ShiftLeft(a7, 8)
a2 = a2 ⊕ ShiftLeft(a6, 8)
a1 = a1 ⊕ ShiftRight(a5, 8)
a0 = a0 ⊕ ShiftRight(a4, 8)

Fig. 5. SMASH-256: Outline of an L-round

sion function. We concentrate first of the design of the H-rounds and L-rounds
in the core function. Arrange the 256 bits of the internal state in a matrix as
follows.

a7 a6 a5 a4

a3 a2 a1 a0

Consider Figure 2. First a bitslice S-box is applied to the top row. Rotated
versions of the words in the top row are then added to words in the second row.
Then a bitslice S-box is applied to the second row, and rotated versions of words
of this result added to words in the top row. This is repeated once, such that in
total in one H-round, four bitslice S-box applications and four diffusion layers
are performed. The rotations in the H-rounds have been chosen such that each
of the 256 bits in the internal memory is mixed with all other bits as quickly
as possible (relative to this design!). It is clear that with rotations and modular
additions all bits depend on all bits after a few steps. However, the H-rounds
were designed such that the dependencies between the bits are stronger than
just via the carry bits of the addition.

The diffusion layer. For the purpose of studying optimum diffusion functions
replace all additions in the H-rounds by exclusive-ors. Also, it shall be assumed
that each of the four output bits of an S-box depend on all four input bits.
Because of the bitslice method and the assumption on the S-box (that all output
bits depend on all input bits), it is convenient to consider only the 32 bit positions
in words of the top row and 32 bit positions in the words of the second row when
discussing dependencies of bits. Consider one bit in the top row of the input to an
H-round. After the first bitslice S-box, this bit affects still only one bit position
(of 32 in total) in the top row. After the diffusion layer, the bit affects in the best
cases four bit positions in the second row (if the four rotations r1, r2, r3, r4 are
all different). After the bitslice of the second row, the bit still only affects four
bit positions in the second row, however after the next diffusion layer, the bit
affects up to 17 positions in the top row, where we have counted also the initial
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single position from the beginning. After the subsequent bitslice of the top row
together with the diffusion layer, the bit affects in the best cases all 32 positions
in the second row, but still only 17 positions in the top row. The fourth and last
bitslice and diffusion layer of the H-round ensures that the initial bit affects in
the best cases all 32 positions of both the top and the second row.

Consider next one bit in the second row of the input to an H-round. After the
first bitslice S-box and diffusion layer, this bit affects still only one bit position
in the second row and zero in the top row. After the next bitslice S-box and
diffusion layer, the bit affects (in the best case) four bit positions in the top
row (if the four rotations r5, r6, r7, r8 are all different) and one bit position in
the second row. After the subsequent bitslice of the top row together with the
diffusion layer, the bit affects 17 positions in the second row in the best case,
but still only 4 positions in the top row. After the fourth and last bitslice and
diffusion layer of the H-round the initial bit affects in the best cases all 32
positions of the top row and 17 positions of the second row. It is a simple matter
to implement a search algorithm which finds values of r0, . . . , r15 such that the
diffusion is optimum as outlined here. All H-rounds in SMASH-256 are designed
according to this strategy.

The L-round. Consider variants of SMASH-256 where the modular additions
are replaced by exclusive-ors. Let a be the 256-bit input to the core function f .
Then the following property holds for the H-rounds:

H(a)<<c = H(a<<c).

This property does not always hold when modular additions are used in the
H-rounds, that is,

(a + b)c = a<<c + b<<c, (9)

does not always hold, since there is no carry bit in the least significant bit of a
modular addition and since the carry in the most significant bit of a modular
addition is thrown away. However, empirical results show that equality holds in
(9) with a probability of about 1/4. Therefore we introduce the L-round, which
uses the shift operation. The shift operation is not invariant under rotations. We
believe that the L-round together with modular additions prevent exploitable
properties like (9) for the core functions in SMASH-256.

The S-boxes. The S-boxes are chosen as in the design of the block cipher
Serpent [3]. These are 4-bit permutations with the following properties:

– each differential characteristic has a probability of at most 1/4, and a one-bit
input difference will never lead to a one-bit output difference;

– each linear characteristic has a probability in the range 1/2 ± 1/4, and a
linear relation between one single bit in the input and one single bit in the
output has a probability in the range 1/2± 1/8;

The three S-boxes used in SMASH-256 are derived as linear variants of the S-
boxes S0, S2, and S4 from Serpent [3]. An implementation of SMASH-256 [1]
uses the bitslice implementations of the Serpent S-boxes from [12], which were
modified slightly to reduce the number of variables used in the program.
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4 Short Analysis of SMASH

There is very little theory in the design of cryptographic hash functions today
and it is very difficult to prove much about the security of these. Therefore it
is not possible to give a precise analysis of cryptographic hash functions like
SMASH. In this section we consider a few general attacks and (try to) argue
that they are unlikely to succeed.

SMASH-256 consists of a total of 48 S-box layers. Differential characteristics
with one active S-box per S-box layer are not possible due to the above design
criteria. A very crude estimate is that there are at least three active S-boxes
per every two S-box layers. Since the most likely differential characteristic for
one layer has probability 2−2 this leads to a complexity of ((2−6)24)−1 = 2144

for a differential characteristic for the function f . A linear characteristic for one
S-box layer has a bias of at most 2−2. An analogue crude estimate for linear
cryptanalysis gives a complexity of 2144. Since the aim for SMASH-256 is a
security level of 2128 it is believed that (traditional) approaches in differential
and linear cryptanalysis are unlikely to be very efficient when applied to SMASH-
256.

Dobbertin’s attacks on MD4 and MD5 as well as the recent attacks[2, 18]
on SHA-0 and SHA-1 exploit that the attacker has much freedom to influence
many of the individual steps of the respective compression functions, namely
through the message blocks. SMASH is different from the SHA-designs in that
the message is input at the beginning (at step 0) only, and it seems this gives an
attacker much less room to play. This is not a proof that these attacks will not
work and the readers are invited to apply them (or variants of them) to SMASH.

5 Performance

An implementation of SMASH-256 [1] shows a performance of about 30 cycles
per byte in a pure C-implementation. For comparison the implementation of
SHA-256 by B. Gladman [8] produced a speed of 40 cycles per byte on the
same platform using the same compiler. Speeds of about 21 cycles per byte for
SHA-256 have been reported in an assembler implementation. It is expected
that an assembler implementation of SMASH-256 would likewise increase the
performance.

6 Finishing Remarks

We have presented a new approach in hash function design together with a con-
crete proposal for a hash function. The proposal deviates from the most popular
hash function designs in use today, in that only one, fixed and bijective, (suppos-
edly strong) cryptographic mapping is used. After the presentation at FSE 2005
SMASH was broken. In [15] it is shown that it is possible to find messages with
256 blocks which collide when compressed through SMASH-256. There appears
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to be a similar attack on SMASH-512 for messages of 512 blocks. The attack
makes use of the “forward prediction” together with some differential techniques.
It appears that there are several ways to modify SMASH to thwart the new at-
tacks. One is to use different f functions for every iteration[15]. Another is to
use a secure compression function not only in the first and last iteration (see
(3)-(5)) but after the processing of every n blocks of the message for, say, n = 8
or n = 16.

One interesting avenue for further research is compression function designs
using two (or more) fixed, bijective mappings.
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SMASH-512

SMASH-512 takes a bit string of length less than 2256 and produces a 512-bit
hash result. The outline of the method is as follows. Let m be a u-bit message.
Apply a padding rule to m (see later), split the result into blocks of 512 bits,
m1,m2, . . . , mt and do as in (6), (7), and (8). The hash result of a message m
is the defined as Hash(iv,m) = ht+1. The subfunctions g1, g2, and f all take a
512-bit input and produce a 512-bit output and h takes a 1024-bit input and
produces a 512-bit output. As a target value of the iv use the all zero 512-bit
string. The design is very similar to that of SMASH-256, the main difference is
that the latter is designed for 32-bit architectures whereas SMASH-512 is for
best suited for 64-bit architectures.

Consider the representation of the finite field GF (2512) defined via the irre-
ducible polynomial q(θ) = θ512 ⊕ θ8 ⊕ θ5 ⊕ θ2 ⊕ 1 over GF (2). Then multiplica-
tion by θ can be defined by a linear shift by one position and an exclusive-or.
In a 64-bit architecture the multiplication can be implemented as follows. Let
y = (y7, y6, y5, y4, y3, y2, y1, y0), where |yi| = 64, then θy = z = (z7, z6, z5, z4,
z3, z2, z1, z0), where for i = 1, . . . , 7

zi =
{

ShiftLeft(yi, 1), if msb(yi−1) = 0
ShiftLeft(yi, 1)⊕ 1, if msb(yi−1) = 1,

and where

z0 =
{

ShiftLeft(y0, 1), if msb(y7) = 0
ShiftLeft(y0, 1)⊕ 0000000000000125x, if msb(y7) = 1.
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H1,3,2 ◦ L ◦ H2,3,1 ◦ L ◦ H1,2,3 ◦ L ◦ H2,1,3 ◦ L ◦ H3,2,1 ◦ L ◦ H3,1,2(·)

Fig. 6. SMASH-512: Outline of f , the core function, where Ha,b,c denotes Ha ◦Hb ◦Hc

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

R1 : 56 40 24 8 55 48 61 14 37 13 25 17 61 29 13 45
R2 : 24 8 48 32 12 62 57 35 1 45 33 13 4 60 12 20
R3 : 8 56 48 0 22 21 7 44 34 30 62 2 58 50 34 10

Fig. 7. The SMASH-512 rotations

The core function in SMASH-512 consists of a mix of 18 H-rounds and five
L-rounds, see Figure 6. The differences between the H-rounds of SMASH-256
and of SMASH-512 are in the rotations used. The outline is the same as for
SMASH-256, see Figure 2, as are the S-boxes. The rotations for SMASH-512 are
in Figure 7. The definition of the L-round is the same as the one for SMASH-256,
see Figure 5.

Padding rule. Let m be a t-bit message for t > 0. The padding rule is as follows:
append a ’1’-bit to m, then append u ‘0’-bits, where u ≥ 0 is the minimum integer
value satisfying

(t + 1) + u ≡ 256 mod 512.

Append to this string a 256-bit string representing the binary value of t.
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Abstract. In this paper, we propose a 2/3-rate double length compres-
sion function and study its security in the black-box model. We prove that
to get a collision attack for the compression function requires Ω(22n/3)
queries, where n is the single length output size. Thus, it has better se-
curity than a most secure single length compression function. This con-
struction is more efficient than the construction given in [8]. Also the three
computations of underlying compression functions can be done in parallel.
The proof idea uses a concept of computable message which can be helpful
to study security of other constructions like [8], [14], [16] etc.

1 Introduction

A hash function is a function from an arbitrary domain to a fixed domain. Hash
functions have been popularly used in digital signatures schemes, public key
encryption, message authentication codes etc. To have a good digital signature
schemes or public key encryption, it is required that hash function should be
collision resistant or preimage resistant. Intuitively, for a collision resistant hash
function H it is hard to find two different inputs X �= Y such that H(X) = H(Y ).
In case of preimage resistant hash function, given a random image it is hard to
find an inverse of that image. Besides this condition, one should define hash func-
tion on an arbitrary domain. Usually, one first design a fixed domain hash func-
tion f : {0, 1}n+m → {0, 1}n (also known as a compression function) and then
extend the domain to an arbitrary domain by iterating the compression func-
tion several times. The most popular method is known as MD-method [2], [15]
with the classical iterations. We first pad the input message by some strings and

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 243–254, 2005.
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the string representing the length so that the length of the padded message be-
comes multiple of m and it avoids some trivial attacks. Now for some fixed initial
value h0 ∈ {0, 1}n and a padded input M = m1|| · · · ||ml ∈ ({0, 1}m)∗, where
|mi| = m, the hash function Hf (h0, ·) : ({0, 1}m)∗ → {0, 1}n is defined as follow :

Algorithm Hf (h0,m1|| . . . ||ml)
For i = 1 to l

hi = f(hi−1,mi)
Return hl

There are many constructions of the underlying compression functions e.g.
SHA-family i.e. SHA-0, SHA-1, SHA-256 [17], MD-family i.e. MD-4, MD-5,
RIPEMD [5] [19] etc. There are several collision attacks [3] [4] [10] [21] on some
of these compression functions. Also people tried to design a compression func-
tion from a block cipher known as PGV hash functions [18]. In [1], [13], the
security of the PGV hash functions were studied in the black box model of the
underlying block cipher.

Nowadays, people are also interested in designing a bigger size hash function
to make the birthday attack infeasible. One can do it by just constructing a
compression function like SHA-512. The other way to construct it from a smaller
size compression function. In the later case one can study the security level of
the bigger hash function assuming some security level of underlying compression
functions. People also try to use block ciphers to extend the output size. There
are many literatures where the double block length hash function were studied
e.g. [7], [8], [11], [12], [16], [20] etc.

1.1 Motivation and Our Results

If a single length compression function has output size n then that of double
length compression function is 2n. For the smaller size hash function the birth-
day attack can be feasible. Thus to make birthday attack infeasible we need
to construct a compression function with larger size output. In this paper, we
construct a double length compression function from a single length compres-
sion function or a block cipher. We use three invocations of independent single
length compression functions or block ciphers to hash two message blocks. Thus,
the rate of the compression function is 2/3. We also prove the security level is
Ω(22n/3) and prove the bound is tight by showing an attack on this compression
function with complexity O(22n/3).

2 Preliminaries

2.1 Some Results on Probability Distribution

In this paper we will be interested in random variables taking values on {0, 1}n

for some integer n > 0. A random variable X is uniformly distributed over the
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set {0, 1}n if Pr[X = x] = 1/2n for all x ∈ {0, 1}n. We use the notation X ∼ Un

to denote a uniform random variable X. We say random variables X1, · · · , Xk are
independent if the joint distribution of (X1, · · · , Xk) is the product of marginal
distributions of Xi’s. So if X1, · · · , Xk are independent and Xi ∼ Un for all
i, then Pr[X1 = x1, · · · , Xk = xk] = 1/2nk for all xi ∈ {0, 1}n. We describe
this case by the notation (X1, · · · , Xk) |= Un. In this case, it is easy to see
that X1|| · · · ||Xk ∼ Unk i.e. uniformly distributed over the set {0, 1}nk. The
n-bit string 0 · · · 0 (known as a zero string) is denoted by 0. For a binary vector
l = (l1, · · · , lk) ∈ Zk

2 , lT denotes the transpose vector of l. Given a set of k
random variables X = (X1, · · · , Xk), X · lT = l1X1⊕ · · · ⊕ lkXk , where 0X = 0
and 1X = X. For a binary matrix Lk×r = [lT1 , · · · , lTr ], X ·L denotes the random
vector (X ·lT1 , · · · , X ·lTr ). Now we state a simple fact from the probability theory.

Proposition 1. If X = (X1, · · · , Xk) |= Un then for any vector l ∈ Zk
2 with

l �= 0 , the random variable X · lT ∼ Un. For any matrix Lk×r with rank r(≤ k),
the random vector X · L |= Ur.

Example 1. Take r = 2 and k = 3. Let l1 = (0, 1, 1) and l2 = (1, 1, 0) then
X · L = (X2 ⊕ X3, X1 ⊕ X2) , where X = (X1, X2, X3) |= Un. By the above
Proposition 1, both X2 ⊕ X3 and X1 ⊕ X2 are independently and uniformly
distributed on {0, 1}n since the matrix L = [lT1 , lT2 ] has rank 2.

2.2 (Independent) Random Functions and Permutations

A random function f : D → R taking values as random variable satisfy the
following conditions

1. for any x ∈ D, f(x) has uniform distribution on R.
2. for any k > 0 and k distinct elements x1, · · ·xk ∈ D, the random variables

f(x1), · · · , f(xk) are independently distributed.

More precisely, one can not construct a single function which is a random
function. Consider a class of functions FuncD→R which consists of all function
from D to R. When one says that f is a random function it means that f is drawn
randomly from FuncD→R. However, to study some security property one assume
a single function as a random function. Although, it is not theoretically possible
this can be meaningful for some types of adversary who only query the function
f and do not explore the internal structure of f . We say two functions f1 and f2

from D to R are independent random functions if they are random functions and
for any k, l > 0 and k distinct elements x1

1, · · · , x1
k ∈ D and l distinct elements

x1
1, · · · , x1

l ∈ D the random variables f1(x1
1), · · · , f1(x1

k), f2(x2
1), · · · , f2(x2

l ) are
independently distributed. Similarly one can define that f1, f2 and f3 are inde-
pendent random functions and so on.

Similarly one can define a random permutation. A permutation E : D → D
is said to be a random permutation if for any k > 0 and k distinct elements
x1, · · · , xk ∈ D, the random variable f(xk) condition on f(x1) = y1, · · · , f(xk−1)
= yk−1 is uniformly distributed over the set D − {y1, · · · , yk−1}. Obviously
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f(x1), · · · , f(xk) are not independently distributed. We sayE : {0, 1}k×{0, 1}n→
{0, 1}n by a family of permutations if for each K ∈ {0, 1}k, E(K, ·) is a per-
mutation on n-bit strings. We say a family of permutations E : {0, 1}k ×
{0, 1}n → {0, 1}n is a random permutation if for each K ∈ {0, 1}k, E(K, ·)
is a random permutation and for each s > 0, and s distinct elements K1, · · ·Ks,
E(K1, ·), · · · , E(Ks, ·) are independent function.

2.3 Some Attacks on Hash/Compression Functions

In this paper, we mainly study the collision resistant hash function but for the
sake of completeness, we want to state the preimage resistance also. Given a
compression function f : {0, 1}N → {0, 1}n, it is called collision resistant if
it is hard to find two inputs x �= y such that f(x) = f(y). It is said to be
a preimage resistant compression function if given a random y ∈ {0, 1}n, it
is hard to find x such that f(x) = y. In the case of a random function f ,
the best attack is birthday attack which takes O(2n/2) or O(2n) queries of f
for collision or preimage attack, respectively. For the hash function based on a
compression function, we can similarly define collision and preimage attack. But,
here the initial value of the hash function is fixed and given to the adversary
before starting the attack. There are also free-start collision and preimage attack
where the adversary can choose the initial value. It can be easily shown that the
free start attack on hash function is equivalent to the corresponding attack on
the underlying compression function.

3 A New Double Length Compression Function

Let fi : {0, 1}2n → {0, 1}n be independent random functions, i = 1, 2, 3. Define,
F : {0, 1}3n → {0, 1}2n, where F (x, y, z) = (f1(x, y) ⊕ f2(y, z)) || (f2(y, z) ⊕
f3(z, x)) with |x| = |y| = |z| = n. We also write F = F1 || F2, where F1(x, y, z) =
f1(x, y)⊕ f2(y, z) and F2(x, y, z) = f2(y, z)⊕ f3(z, x) (see Figure 1).

Theorem 1. (F (x1, y1, z1), F (x2, y2, z2)) |= U2n, (x1, y1, z1) �= (x2, y2, z2). In
particular, ∀M �= N and Z, Pr[F (M) = F (N)] = 1

22n and Pr[F (M) = Z]
= 1

22n .

Proof. Let M = (x1, y1, z1) �= (x2, y2, z2) = N . Assume that x1 �= x2, y1 =
y2 = y (say), and z1 = z2 = z (say). For the other cases, we can prove the
result similarly. To prove that (F (M), F (N)) |= U2n, it is enough to prove
that (F1(M), F2(M), F1(N), F2(N)) |= Un. Since f1, f2 and f3 are indepen-
dent random functions, f1(x1, y), f1(x2, y), f2(y, z), f3(z, x1) and f3(z, x2) are
independently distributed. Thus, by Proposition 1 (in Section 2.1) we know that
f1(x1, y)⊕f2(y, z), f3(z, x1)⊕f2(y, z), f1(x2, y)⊕f2(y, z) and f3(z, x2)⊕f2(y, z)
are independently distributed. So we have proved the proposition. ��
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Fig. 1. A double length compression function

3.1 The Model for Adversary and Computable Message

In this subsection, we state briefly how an adversary works in the random oracle
model. Adversary can ask the oracles f1, f2 and f3 i.e. he can submit (a, b) to any
one of the oracles fi and he will get a response c such that fi(a, b) = c. We restrict
the number of queries for each fi by at most q. Finally he outputs a pair M �= N
(for collision attack of F ) such that both F (M) and F (N) can be computed
from the set of queries he made. We say adversary wins if F (M) = F (N).

Definition 1. (Computable message)
Let Q1 = {(x1

i , y
1
i )}1≤i≤q, Q2 = {(y2

i , z2
i )}1≤i≤q and Q3 = {(z3

i , x3
i )}1≤i≤q be the

three sets of queries for the random oracles f1,f2 and f3, respectively. We say a
message M = (x, y, z) is computable if (x, y) ∈ Q1, (y, z) ∈ Q2 and (z, x) ∈ Q3.

Thus it is easy to observe that a message M is computable if and only if
F (M) can be computed from the set of queries. Because of Theorem 1 of this
section if we can bound the number of computable message by some number say
Q then it is easy to check that the adversary will get a collision with probability
at most Q(Q− 1)/22n+1. In case of preimage attack, the probability is at most
Q/22n. Thus the question reduces how to get an upper bound of the number of
computable messages from any set of queries Q1,Q2 and Q3 where |Qi| ≤ q, 1 ≤
i ≤ 3. To have an upper bound we can convert our problem into a combinatorial
graph theoretical problem. In the next subsection we study that problem.
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3.2 A Combinatorial Graph Theoretical Problem

Tripartite Graph. A graph G = (V,E) is known as a tripartite graph if
V = A�B �C (disjoint union) and for any edge {u, v} ∈ E either u ∈ A, v ∈ B
or u ∈ A, v ∈ C or u ∈ B, v ∈ C (see Figure 2). Thus there are no edges between
vertices in A or between vertices in B or between vertices in C. We use the
notation e(A,B,G) (or simply e(A,B)) for the set of edges between A and B.
Similarly we can define e(B,C) and e(A,C). Note that for every triangle ' in
G, the vertices of ' are from A,B and C with one vertex from each one. Now
we can state the following problem.

Problem : Given an integer q, what is the maximum number of triangles of a
tripartite graph G on A �B � C such that |e(A,B)|, |e(B,C)|, |e(A,C)| ≤ q.

w1 = w2

· · ·u1 u2 ur

v1

vr wr

A

B C

· · ·v2 · · ·

Fig. 2. A tripartite graph

We first prove a Proposition which will be useful for finding the upper bound
of the problem stated above.

Proposition 2. Let G be a tripartite graph on A�B�C such that |e(A,B)| ≤ q.
For a set of edges EBC = {v1w1, · · · , vrwr} ⊆ e(B,C) such that vi’s are distinct
vertices from B, the number of triangles in G whose one of the sides is from
EBC is at most q.

Proof. Let T be the set of triangles in G one of whose side is from EBC . Now
we can define an injective map ρ from the set T to the set e(A,B). Given a
triangle uvw ∈ T with vw ∈ EBC and v ∈ B, define ρ(T ) = uv. Obviously the
map ρ : T → e(A,B) is well defined. To see it is an injective map we just note
that all vi’s are distinct (see Figure 2). So, ρ(uvw) = ρ(u′v′w′) with v, v′ ∈ B
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and u, u′ ∈ A implies that u = u′ and v = v′. Since v = v′ and vw, v′w′ ∈ EBC

implies that w = w′. So the two triangle uvw and u′v′w′ are identical. ��

Thus if we can divide the set e(B,C) into r sets Ei
BC , 1 ≤ i ≤ r such that

each Ei
BC has the property stated in the Proposition 2 for B or C then the

number of triangles in G will be at most r × q. Assume q = n2. We will show
now that we can always divide e(B,C) into 2n many such sets. Thus upper
bound of triangles is 2n3. Let G = (V,E) be a bipartite graph on B � C with
|E| ≤ n2. We say a set of edges E′ = {u1v1, · · · , urvr} in G is good if all ui ∈ B
or C and ui’s are distinct.

Proposition 3. Given a bipartite graph G = (V,E) with V = A�B and |E| ≤
n2 we can divide E into at most 2n good sets of edges.

Proof. The proof is by induction on n. Assume |E| > (n − 1)2. Thus we can
find a set B or C where number of vertices with positive degree is at least n.
Without loss of generality we assume that the set B has n vertices u1, · · · , un

with degree at least one. Let uivi ∈ E , where vi ∈ C, 1 ≤ i ≤ n. Note that
vi’s are not necessarily distinct. So E1 = {u1v1, · · · , unvn} is a good set. Now
consider E − E1. Again, if |E − E1| ≤ (n − 1)2 then we can apply induction
hypothesis and we will get 2(n−1) good sets for E−E1. So the result is true. If
|E −E1| > (n− 1)2. Again we can find a good set E2 of size at least n by using
similar argument. Now |E| − |E1| − |E2| ≤ n2 − 2n ≤ (n− 1)2. So by induction
hypothesis we can get 2(n − 1) good sets in E − (E1 ∪ E2). Thus we have 2n
good sets whose union is the whole set E. For n = 1 the result is trivial. ��

Theorem 2. Given a positive integer n, the number of triangles of any tripartite
graph G on A � B � C such that, |e(A,B)|, |e(B,C)|, |e(A,C)| ≤ n2 is at most
2n3.

The proof of the above theorem is immediate from Proposition 2 and 3. In
fact we have better and sharp bound which is n3. The proof is given by one of
the anonymous referee. He proved a general statement as follow :

Theorem 3. Given a positive integer n, the number of triangles of any tripartite
graph G on A�B�C is at most (XY Z)1/2 such that, |e(A,B)| ≤ X, |e(A,C)| ≤
Y and |e(B,C)| ≤ Z. In particular, when X = Y = Z = n2 the number of
triangle is at most n3.

Proof. Let xa be the number of edges from the vertex a ∈ A between A and
B. Similarly, ya is the number of edges between A and C from the vertex a.
Obviously, ∑

a∈A xa = X and
∑

a∈A ya = Y .

Now the number or triangles containing the vertex a is bounded by min{Z, xaya}.
Since a triangle containing the vertex a is determined by two edges containing a
or determined by the opposite edge of a. But we have, min{Z, xaya} ≤

√
Zxaya.

Thus the number of triangles is bounded by



250 M. Nandi et al.∑
a

√
Zxaya =

√
Z
∑

a

√
xaya ≤

√
Z.
√∑

a xa)(
∑

a ya) =
√

XY Z. ��

Here, we use the Cauchy-Schwartz inequality. If we take X = Y = Z = n2

then the number of triangle is bounded by n3. We have an example where the
number of triangles is exactly n3 namely we take a complete tripartite graph.
That is we have three disjoint set of vertices A, B and C each of size n. Consider
all possible edges between A and B, between A and C and between B and C.
Obviously the number of edges between A and B or B and C or A and C are
exactly n2. The number of triangles is n3 since any vertex from A, from B and
from C will contribute a triangle.

3.3 Security Study of the Double Length Compression Function

We have three disjoint vertices set each of size 2n. In particular, take
A = {0, 1}n×{1}, B = {0, 1}n×{2} and C = {0, 1}n×{3}. We can correspond
each query by an edge of a tripartite graph on A � B � C as follow: given a
query (x, y) on f1 we add an edge {(x, 1), (y, 2)}. The number 1,2 and 3 are
used to make A,B and C disjoint. Similarly we can add edges for queries on
f2 and f3. Now it is easy to note that a computable message corresponds to a
triangle in the graph G. Thus the number of computable message is equal to
the number of triangles. Also the adversary can ask at most q queries to each fi

and hence the number of edges between A and B or B and C or A and C are at
most q. Thus by the Theorem 2 we have at most 2q3/2 computable inputs for
F . Thus the winning probability is bounded by 2q3/2(2q3/2 − 1)/22n+1. So the
number of queries needed to get a collision is Ω(22n/3). We will show an attack
which makes O(22n/3) queries to get a collision on F . So the security bound
is tight. For preimage attack the winning probability is bounded by q3/2/22n,
thus the number of queries needed to get a preimage is Ω(22n/3). This bound is
also tight and one can find an attack very similar to the following collision attack.

A Collision Attack on F . The attack procedure is very much similar with
the security proof. We first choose 2n/3 values of xi, yi and zi independently,
1 ≤ i ≤ 2n/3. Now we will query f1(xi, yj) for all 1 ≤ i, j ≤ 2n/3. Thus we have
to make 22n/3 queries of f1. Similarly, we query for f2 and f3. Now we have 2n

computable inputs and check whether there is any computable collision pair.

Remark 1. It is easy to note that, in the security proof of F we do not use
the fact that |x| = |y| = |z| = n. In fact, if we have fi : {0, 1}3n → {0, 1}n,
1 ≤ i ≤ 3 and define F (x, y, z) = (f1(x, y||0n) ⊕ f2(y, z))||f2(y, z) ⊕ f3(x, z) ,
where |x| = |y| = n and |z| = 2n then we have same security level as in the
previous definition. The proof for that is exactly same with the previous proof.
Note that, F : {0, 1}4n → {0, 1}2n. So we use two message block in each round
function F and three parallel computations of fi’s are made. So rate of this
compression function is 2/3.

Remark 2. One can define a function F : {0, 1}4n → {0, 1}2n by F (x, y, z1, z2) =
(f1(x, y, z1)⊕f2(y, z1, z2))||(f2(y, z1, z2)⊕f3(x, z1, z2)) hoping for more security.
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But an attack can be shown with complexity O(22n/3). First, fix some z1 and
then choose 2n/3 values of x, y and z2 independently. By the same argument like
previous attack, it still has 2n computable messages and hence we will expect to
have a collision on F .

3.4 Block-Cipher Based Double Length Compression Function

Let E : {0, 1}2n × {0, 1}n → {0, 1}n be a block cipher with 2n-bit keys. Define
a function f : {0, 1}3n → {0, 1}n, as follow :

f(x, y, z) = Ex||y(z)⊕ z,

|x| = |y| = |z| = n, Here, we will assume E(·) as a family of random
permutations. More precisely, given any integer s > 0, and s distinct keys
k1, · · · , ks ∈ {0, 1}2n, the functions Ek1 , · · · , Eks

are independent random per-
mutations. It is easy to check that if we sacrifice two bits then we can get
three instances of f which will be independent to each other. That is we
can define, fi(x, y, z) = E<i>||x||y(z) ⊕ z, where < i > is the two bit bi-
nary representation of i and |x| = n − 2, |y| = |z| = n. Then we can define
similarly the double length compression function F : {0, 1}4n−2 → {0, 1}2n

i.e. F (x, y, z, t) = (f1(x, y, z) ⊕ f2(x, z, t)) || (f2(x, z, t) ⊕ f3(x, y, t)) , where
|x| = n− 2, |y| = |z| = |t| = n (see Figure 3).
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Fig. 3. A double length compression function based on a double-key length block cipher
(bi :=< i >)
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Here an adversary can ask both E and E−1 query. Let {(k, a, b)} be a query
response triple (in short q-r triple), where Ek(a) = b. We can assume that, the
first two bits of k not equal to 00 otherwise the query is useless to get a collision
attack. Now, if the first two bits of k is < i > with i �= 0 and say k′ is the
remaining 2n− 2 bits then,

fi(k′, a) = a⊕ b if and only if (k, a, b) is a q-r triple.

Thus given a set of q q-r triples we can have at most q computation of fi

for each i and hence we can have at most 2q3/2 computable messages. Now it is
enough to find a bound of Pr[F (M) = F (N)], where M �= N .

Now consider M = (x1, y1, z1, t1) �= (x2, y2, z2, t2) = N . We assume that
x1 = x2 = x, y1 = y2 = y, z1 �= z2 and t1 �= t2. For the other cases one can
study similarly. Now, the event F (M) = F (N) is equivalent to

f1(x, y, z1)⊕ f2(x, z1, t1) = f1(x, y, z2)⊕ f2(x, z2, t2),
f3(x, y, t1)⊕ f2(x, z1, t1) = f3(x, y, t2)⊕ f2(x, z2, t2).

To compute the probability of happening above we can first condition on
each term except f1(x, y, z1) and f3(x, y, t1). Thus the conditional event would
be f1(x, y, z1) = a and f3(x, y, t1) = b for some string a and b. We now have,

Pr[f1(x, y, z1) = a, f3(x, y, t1) = b|f2(x, z1, t1) = a1, · · · , f3(x, y, t2) = a4]
≤ 1/2n−1 × 1/2n−1

for some a1, · · · , a4. Thus, probability of collision for a given pair is bounded
by 1/22n−2 and hence success probability after q many queries is bounded by
2q3/22n−2. Note that 2q3/2 is the maximum number of computable messages
and hence the number of pairs of computable messages is at most 2q3/22n−2.
Thus we need Ω(22n/3) many queries to have non-negligible success probability.

4 Future Work and Conclusion

This paper deals with a new double length compression function which can uses
three parallel computations of a compression function or a double key block
cipher. Although the security of this compression function is not maximum
possible (i.e. there is a better attack than birthday attack) the lower bound of
the number of queries is Ω(22n/3). So it has better security than a most secure
single length compression function. Also the security is proved for compression
function. So the hash function based on the compression function has same
security level for free-start collision attack. So it would be interesting to study
the security level for collision attack. Also one can try to design an efficient (if
possible, rate-1) double block length hash function which is maximally secure
against collision attack even if the underlying compression function is not secure.
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Abstract. This paper contains several attacks on the hash function
MD2 which has a hash code size of 128 bits. At Asiacrypt 2004 Muller
presents the first known preimage attack on MD2. The time complexity
of the attack is about 2104 and the preimages consist always of 128 blocks.
We present a preimage attack of complexity about 297 with the further
advantage that the preimages are of variable lengths. Moreover we are
always able to find many preimages for one given hash value. Also we
introduce many new collisions for the MD2 compression function, which
lead to the first known (pseudo) collisions for the full MD2 (including
the checksum), but where the initial values differ. Finally we present a
pseudo preimage attack of complexity 295 but where the preimages can
have any desired lengths.

1 Introduction

A hash function is a function that takes an arbitrary long input, and produces
a fixed length output. The output is often called a fingerprint of the input. A
cryptographic hash function needs to satisfy certain security criteria in order to
be called a secure hash function. Let

H : {0, 1}∗ → {0, 1}n

denote a hash function, whose output is of length n bits. A cryptographic hash
function should be resistant against the following attacks:

– Collision: Find x and x′ such that x �= x′ and H(x) = H(x′).
– 2nd preimage: Given x and y = H(x) find x′ �= x such that H(x′) = y.
– Preimage: Given y = H(x), find x′ such that H(x′) = y.

Typically one requires that there must not exist attacks of these three types
which are better than brute-force methods. Thus, to find a collision should not
have a lower complexity than about 2n/2 and it should not be possible to find
preimages in time less than 2n.

It is common to construct hash functions from iterating a so-called a com-
pression function

h : {0, 1}n × {0, 1}l → {0, 1}n,
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which compresses a fixed number of bits. Here the output of one application
of this function, hi, of length n is called a chaining variable and is used as an
input in the next iteration together with the next message block mi+1 of length
l. If the design of a hash function follows the principles of Merkle and Damg̊ard
[4, 1], it can be shown that a collision for the hash function H implies a collision
for the compression function h. Thus, if one can design a secure compression
function, then one can also design a secure hash function. Still, the first step
towards finding weaknesses in the hash function may be to find weaknesses in
the compression function. The first chaining variable in an iterated hash function
is often called the IV (initial value) and this is often fixed. Attacks on hash
functions where the attacker is able to choose or change the IV are called pseudo
attacks. Must popular hash functions are using an iterative compression function
and a fixed IV . Examples are MD4, MD5, SHA-1, and RIPEMD-160.

The organisation of this paper is as follows. Section 2 presents the MD2 hash
function. Section 3 presents some collision attacks on the compression function
where many details are included in an appendix. Section 4 presents several at-
tacks on MD2 (including the checksum). They are a pseudo collision attack,
several preimage attacks, as well as a pseudo preimage attack. As far as we are
informed the complexities of all these attacks are the lowest known today. Below
is a summary of all known results on MD2, where an asterisk (*) indicates that
the attack is new.

Collision Preimage Comments
Compression function 28[6] 273 [5]
Hash function (pseudo) 216 (*) 295 (*) Arbitrary length messages

Hash function - 2104[5] Message length 128 blocks

Hash function - 297.6-2112 (*) Message length 44-128 blocks

2 The MD2

The MD2 hash algorithm is designed by Ron Rivest and published in 1988[2, 3].
It is a function H : GF (256)∗ → GF (256)16, which takes an arbitrary number
of bytes GF (256) and outputs a string of 16 bytes GF (256)16. The function
consists of iterations of a compression function h : GF (256)16 × GF (256)16 →
GF (256)16, hi = h(hi−1,mi), where the input in the ith iteration is the ith
message block mi and the chaining variable hi−1. The message m to be hashed
is appended with some padding bytes and a checksum c before it is processed:
m||p||c = m1||m2|| · · · ||mt+1, where |mi| = 128 for i = 1, 2, . . . , t+1. At least one
byte and at most 16 bytes of mt are padded. Let b be the length of the message
in bytes, and i ≡ b mod 16, i ∈ {0, 1, . . . , 15}, then d = 16 − i (represented in
a byte) is added to the message d times. There is at least one byte padding,
so if the length is b ≡ 15mod 16, then d = 1 the byte p = 1 is appended the
message. If the message length in bytes is 0 modulo 16 , then d = 16 and the
byte sequence p =16| · · · |16 of length 16 bytes is added to the message, so that
the length of the message still is 0 modulo 16.
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Algorithm 1. Algorithm to compute the checksum c = c0||c1|| · · · ||c15

for j = 0, 1, . . . , 15
cj = 0

for i = 1 to t do
for j = 0 to 15 do

cj = s(c
j−1mod 16

⊕ mi,j) ⊕ cj

end /*for i*/
end /*for j*/

Algorithm 2. The compression function in MD2, where the output is the 16
first bytes of hi,1 | hi,2 | · · · | hi,16| · · · |hi,48

for j = 1 to 16 do
hi,j = hi−i,j

hi,16+j = mi,j

hi,32+j = hi−i,j ⊕ mi,j

t=0
for r = 1 to 18 do

for j = 1 to 48 do
t = hi,j = s(t) ⊕ hi,j

end /*for j*/
t = r − 1modulo 256

end /*for r*/

Next a checksum block mt+1 = c = c0 | c1 | · · · | c15 is appended to the
message. The checksum [Algorithm 1.] is generated processing every byte of
the message one block at the time, starting at the first block. The checksum is
initialized to 0, ci = 0 for i = 0, 1, . . . , 15. Then for all t message blocks, mi for
i = 1, 2, . . . , t, process all 16 bytes of that block and the checksum j = 0, 1, . . . , 15
by the function cj = s(c(j−1) ⊕mi,j)⊕ cj where mi,j is the j’th byte of the i’th
block of the message and where s : {0, 1}8 → {0, 1}8 is a bijective mapping, which
is also used in the compression function. The details of s are not important for
the results in this paper. The hash function is iterated in the following way:

– h0 = iv = 0
– hi = h(hi−1,mi) for i = 1, 2, . . . , t + 1
– H(m) = ht+1

The compression function [Algorithm 2.] of MD2 takes two inputs of each 128
bits, cf., earlier, and consists of an 18-round iterative process, where a vector of
the 48 bytes constructed from hi−1||mi||hi−1 ⊕mi and denoted

hi = hi,1||hi,2|| · · · ||hi,48

is repeatedly processed from left to right through the use of the same round func-
tion consisting of simple byte exclusive-ors and the eight-bit bijective mapping
s(), also used in the checksum calculation.
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3 Attacks on the Compression Function

In [6] a collision attack on the compression function of MD2 is given. Recall
that this function computes hi = h(hi−1,mi). Rogier and Chavaud give 141
collisions for the compression function where for all collisions hi−1 is fixed to the
value zero. Note that the IV of MD2 as stated in [2] is zero. We found some
variations of this attack. First of all we found that the collision attack extends
and it is possible to find many more collisions of this form. We implemented one
improvement and found 32,784 collisions, all with hi−1 = 0. This attack takes
very little time. Also we found that it is possible to find so-called multi-collisions
for the compression function, that is, a set of different mis all with same output
in the compression function and all with hi−1 = 0. With a complexity of about
272 one expects a multiple collision of eight messages.

Another variation of Rogier and Chavauds attack is to fix mi to zero and find
different values of hi−1 leading to identical outputs of the compression function
and yet another variation is to fix mi ⊕ hi−1. These variants are similar to the
above original one, although the complexities are slightly higher. [6] also consider
cases where only a subset of the bytes of hi−1 are zeros. We show similar results
for the variations. The details of the variant where hi−1 = 0 are descibed in
Appendix B. The details of the other variants are described in an extended
version of the paper available upon request.

In the next section we shall use some of the improvements and variations of
the attacks on the compression function.

4 Attacks on the MD2 Hash Function

4.1 A Pseudo Collision Attack on MD2

In Section 3 we mention a collision attack on the compression function where
mi = m′

i = 0 and hi−1 �= h′
i−1, but where hi = h′

i. Using this attack we are able
to find collision for MD2 (including the checksum) but using different IV s. We
have found 130 such collisions in 2 seconds on a single PC, and can find ≈ 215

such collisions in about 512 seconds (under 9 minutes) with that property. For
any such collision hi−1 �= h′

i−1, thus if two different IV values of MD2 are chosen
to be IV = hi−1 and IV ′ = h′

i−1 then one can find collisions for all of MD2 for
a message using two different IV s.

– Find a pair (h0,m1) �= (h′
0,m1) where m1 = 0 such that h(h0,m1) =

h(h′
0,m1).

– Set IV = h0 and IV ′ = h′
0.

– Choose message blocks m2|m3|, . . . , |mt.
– Then clearly H(IV,m) = H(IV ′,m), where m = m1|m2|m3|, . . . , |mt.

Notice that the checksums for both hashes are identical since the message blocks
are identical, and therefore we have pseudo collision for MD2.

Let us now consider a situation where such collisions could become practical.
Imagine a scenario where Alice and Bob use a digital signature system using a
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hash function. Imagine that they are signing the same message m many times,
e.g., “Alice owes Bob 100 US$”. In order to avoid that the same message gives
an identical signature, Alice suggests to use a time-stamp, but Bob convinces
her that instead he shall send Alice a fresh random hash-IV (e.g., a nonce) to be
used in every new signature. Alice agrees to this, however demands that the IV
Bob chooses should be run through the hash function first. And so, they agree
on the following protocol.

– Bob chooses a random IV
– Alice calculates r = h(IV, 0), creates the hash as usual by h = H(r,m), and

signs the hash value, sign(h).

Assuming that the digital signature scheme and the hash function are secure, it
seems hard for Bob to cheat. In every new signature a different IV is used, so Bob
cannot play the replay attack. However using MD2 in this protocol is a problem
since Bob is able to find many collisions of the type h(IV, 0) = h(IV ′, 0), and
hence he is able to reuse the signature and message together with other IV s.

4.2 The Preimage Attack

In [5] F. Muller presents the first known preimage attack on MD2 faster than
a brute-force attack. The attack is divided into two parts: in the first part one
finds many preimages of the compression function and in the second part one
finds those preimages which conform with the checksum function. Note that
for most iterated hash functions a preimage attack of the compression function
immediately gives at least a pseudo preimage on the hash function, but this is
not true for MD2 because of the additional checksum block which is appended
to the messages. [5] lists three different attacks on the compression function:

1. Given hi and hi−1, find a message mi such that hi = h(hi−1,mi). The
complexity is 295.

2. Given hi and mi, find a value hi−i such that hi = h(hi−1,mi). The com-
plexity is 295.

3. Given hi, find a value hi−i and a message mi such that hi = h(hi−1,mi).
The complexity is 273.

Here one unit in the complexity measures is the time to run the compression
function once. All these attacks are expected to give one solution, but there
might also be zero or several solutions. Assuming that the compression function
is a random function, the probability that there is no solution is (1− 2−128)2

128
,

and the probability that there are at least w solutions is:

pw ≈ 1−
w−1∑
i=0

[(
2128

i

)
2−128i · (1− 2−128)2

128−i

]
≈ 1− (

w−1∑
i=0

1
i!

)e−1.

The first attack above can be used to find also preimages for (all of) MD2[5].
With h0 = 0 and h = h128 the attack is as follows, where h0 is given and i is
initialised to 1:
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1. Choose a random value of hi.
2. If more than 2 solutions of mi satisfying hi = h(hi−1,mi) is found: Increase

i by 1. If i < 128: Goto step 1.
3. If no more than 2 solutions of m128 satisfying h128 = h(h127,m128) is found:

Set i to 127 and goto step 1.

This gives 128 consecutive pairs (hi−1, hi) for which there are at least 2 different
values of mi such that hi = h(hi−1,mi). Consequently there are at least 2128

different messages m (of 128 blocks) such that h = H(m), and therefore one
of these messages is expected to conform with the checksum m128 = c. Let c[i]
denote the checksum after i iterations (i message blocks). Using the birthday
attack on the checksum function has a complexity of about 264:

– Compute 264 values of c[64] by iterating the checksum function through 264

possible values of the blocks m1,m2, . . . , m64.
– Compute 264 values of c[64] by calculating the checksum backwards through

264 possible values of the blocks m65,m66, . . . , m128 = c.
– Search for a collision between elements in the two lists.

The expected number of collisions in this last step is 1. The overall complexity
of this attack is as follows. The probability of finding at least two solutions
in the attack on the compression function is approximately p2 = 1 − 2e−1,
and for each of the steps in the algorithm we expect p−1

2 repeats. So the total
complexity is 128 · p−1

2 · 295 ≈ 2104. The padding bytes have not been considered
in this attack, but it is strightforward to ensure that the preimages have correct
padding without increasing the complexity of the attack[5]. One drawback of this
preimage attack is that the messages always consist of 128 blocks. It is left as
an open question in [5] to find preimages with fewer blocks. In the next section
we give an improvement in complexity of the above attack as well as variants
where the messages have fewer than 128 blocks.

4.3 Improvement of the Preimage Attack

First we give a preimage attack also with 128 blocks in the messages but with a
lower complexity. We are given h0 = 0 and h = h128 and proceed as follows:

1. Given h0 = 0; use the collision attack from Section 3 (see also Appendix B)
to find h1 and a collision for u ≥ 4 different values of m1 satisfying h1 =
h(h0,m1).

2. Let h127 = h1, and use the preimage attack to try to find v ≥ 1 values of
m128 such that h128 = h(h127,m128). If there are no solutions, use another
collision from step 1.

3. Let h2 = h1 and find w ≥ 2 values of m2 such that h2 = h(h1,m2). If there
are no solutions, repeat step 2 using another collision from step 1.

4. Set hi = h1 for i = 3, . . . , 126.

This is a situation where h0 = 0, h1 = h2 = · · · = h127, h128 = h, and the use
of the birthday attack on the checksum is expected to give 1 solution. The first
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Table 1. Complexities of the preimage attack for different message lengths, where in
each case one solution is expected

w ≥ message length complexity

2 128 297.6

3 80 299.3

4 64 2101.4

5 55 2103.8

6 50 2106.4

7 46 2109.2

8 43 2112.2

step has a relative small complexity as discussed before, but we might be forced
to repeat steps 2 and 3. The probability of a solution in step 2 is approximately
p1 = 0.63, and the probability in the third step is approximately p2 = 0.26.
Total complexity of the attack is then

p−1
1 · p−1

2 · 295 ≤ 297.6.

There are possible ways to shorten the number of blocks in the preimages, but at
the expense of higher complexity. If we require that w ≥ 3 in step 3, we expect
a slightly higher complexity, but the number of blocks in the preimages would
drop to approximately log32128. Table 1 shows the complexities and lengths of
the preimages for different lower bounds of w. As an example, it is possible to
lower the number of blocks in the preimages to 55 instead of 128, by requiring
w ≥ 5 in which case the complexity is ≤ 2104.

It is also possible to get more preimages without increasing the total (time)
complexity. Since we use a preimage where hi−1 = hi, the possible length of the
chain in the middle can be arbitrarily long, however the length is limited by the
complexity of the collision attack of the checksum. One example is an attack
where the messages are of length 191 and where w ≥ 2. This gives a memory
and computational complexity of 295 in the birthday attack on the checksum,
and it is expected to give 262 collisions and thereby 262 possible preimages, but
total running time of the attack is unchanged.

4.4 A Pseudo Preimage Attack on MD2

In this section we present a pseudo preimage attack on MD2 which has better
complexity than the preimage attack, and where the messages can be (almost)
as short or as long as we desire. This attack uses two attacks from [5] on the
compression function having complexities 273 and 295 respectively.

Initially a hash value h is given, and we are able to find a message m and an
IV which give us the desired hash value h = H(IV,m). First use the method
of finding pseudo preimages ht and mt+1 of ht+1 = h in the compression func-
tion. Remember that the last message block mt+1 is the checksum block, and
we might repeat this preimage attack to find the second last message block,
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which also contains the padding bytes. Due to the high degree of freedom in the
attack on the compression function, it is possible to choose between 1 and 16
suitable padding bytes in this message block mt, but it is sufficient to choose
the last byte of mt equal to 1, and the attack still gives us mt and ht−1 with
complexity 273.

Next we need to have at least one more message block in our preimage to make
the checksum consistent with the (given) initial value c[0] = 0, (recall that c[i]
denotes the checksum after i iterations (i message blocks). A potential problem
with the checksum could be to fit the two fixed ends c[0] = 0 and c[t] = mt+1.
However it turns out to be easy to “glue” two consecutive checksum values c[i−1]
and c[i] together by choosing an appropriate value mi. Notice that it is also
possible to calculate the checksum c[i] = c(c[i − 1],mi) backwards by inverting
the function, c[i − 1] = c−1(c[i],mi). Now suppose we have found the message
values m2 and the checksum, we compute c[2] and then c[1] by going backwards.
We now “glue” c[0] and c[1] together by finding the appropriate m1. To get a
preimage of two blocks we set h1 = ht−1 and m1 = mt−1, and use another
pseudo preimage attack from [5], having complexity 295, to find IV = h0. Using
the MD2 hash function on the IV and a message m will now give the required
hash h = H(IV,m). The total complexity in this situation where the message
length is two, is 295.

For a required message length t, and given ht+1 = h the algorithm is as
follows:

– Find ht and mt+1(= c) such that ht+1 = h(ht,mt+1).
– Find ht−1 and mt (included valid padding byte), such that ht = h(ht−1,mt).
– Repeat the preimage attack t− 2 times to find h1 and m2.
– Find c[1] by calculating the checksum backwards by using mi for i = 2, 3, . . . ,

t + 1
– Use special property in the checksum algorithm to find m1 such that c[1] =

c(0,m1).
– Use the other pseudo preimage attack[5] to find IV = h0 given h1 and m1.

The complexity of three first steps of the attack is t · 273 and the last step has
complexity 295. The other parts of the algorithm have relatively small complexity
and the total complexity of the attack is 295 as long as t ≤ 221. The message
length could be as small as t = 2.

5 Conclusion

In this paper some new attacks on the hash function MD2 were presented. First
some extended collision attacks on the compression function were given. Using
one of these attacks it was shown to be possible to mount a pseudo collision
on the MD2, which is the first known attack of its kind faster than the trivial
attacks. The paper also presented the best known preimage attack on MD2 which
is an improvment of a factor of 80 compared to existing attacks. Also, it was
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shown that the lengths of the preimages can be made smaller than in previous
attacks, where the lengths were fixed and relatively high. Moreover it was shown
that it is possible to extend the attack such that many preimages are found.
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A Properties of the MD2 Compression Function

In order to be able to describe the attacks it is convenient to describe the com-
pression function and its intermediate states in a 19× 49-matrix

T = (Ti,j)
i=0,1,...,18
j=0,1,...,48,

which is also shown in Figure 1, where the first row is made from hi−1, mi and
hi−1⊕mi. The first element T0,0 is never used, but (T0,j)j=1,2,...,48 = hi−1 | mi |
hi−1 ⊕mi−1.

Next the rows of the matrix is processed in an iterative manner:

– T1,0 = 0
– Ti,0 = Ti−1,48 + i− 2mod 256 for i = 2, 3, . . . , 18 (but not for i = 1)
– Ti,j = Ti−1,j ⊕ s(Ti,j−1) for i = 1, 2, . . . , 18 and j = 1, 2, . . . , 48
– hi = (T18,j)j=1,2,...,16

After this procedure the matrix contains all the states of the compression matrix.
As we shall see, it is sometimes advantageous in a cryptanalytic approach to
try and compute the values in the matrix in a different order than the above
line by line approach. To help us do this, we have derived five computing rules
directly from the algorithm. The three first rules are shown in Figure 2. The
two remaining are just the dependencies between the first and last columns of
T . The rules are:
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hi

T3T1

T2

hi−1 im h    +mi−1 i

Fig. 1. The MD2 compression function calculation shown as a matrix T. It also shows
how the submatrices T1, T2 and T3 are defined, and one line at the time is computed
from left to right. The 16 rightmost bytes of the last line of T1 (the dark area in the
last line) contains hi = h(hi−1, mi) when the matrix is completed

1. Ti,j = Ti−1,j ⊕ s(Ti,j−1), where i = 1, 2, . . . , 18 and j = 1, 2, . . . , 48.
2. Ti−1,j = Ti,j ⊕ s(Ti,j−1), where i = 1, 2, . . . , 18 and j = 1, 2, . . . , 48.
3. Ti,j−1 = s−1(Ti,j ⊕ Ti−1,j), where i = 1, 2, . . . , 18 and j = 1, 2, . . . , 48.
4. Ti,0 = Ti−1,48 + (i− 2)mod 256, where i = 2, 3, . . . , 18.
5. Ti−1,48 = Ti,0 − (i− 2)mod 256, where i = 2, 3, . . . , 18.

The three first rules give us five properties from [6] also shown in Figure 3 and
Figure 4.
Property 1: Let k < m and l < n. If the elements (Tk,j)j=l,l+1,...,n from row k

and (Ti,l)i=k,k+1,...,m from column l are known the submatrix (Ti,j)
i=k,k+1,...,m
j=l,l+1,...,n

is uniquely determined using rule 1 (Figure 3).

Property 2: Let k < m and l < n. If the elements (Tk,j)j=l,l+1,...,n from row k

and (Ti,n)i=k,k+1,...,m from column n are known the matrix (Ti,j)
i=k,k+1,...,m
j=l,l+1,...,n is

uniquely determined using rule 3 (Figure 3).

Property 3: Let k < m and l < n. If the elements (Tm,j)j=l,l+1,...,n from row
m and (Ti,l)i=k,k+1,...,m from column l are known the matrix (Ti,j)

i=k,k+1,...,m
j=l,l+1,...,n

is uniquely determined using rule 2 (Figure 3).

Property 4: Let l < n and k < m, such that m − k = n − l.
If the elements (Ti,n)i=k,k+1,...,m from column n are known then half the
square matrix (Ti,j)

i=k,k+1,...,m
j=l,l+1,...,n is uniquely determined under the diagonal

(Ti,j)
i=k,k+1,...,m
j=n+k−i,(n+k−i)+1,...,n using rule 3 (Figure 4).
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Fig. 2. The dependency of an element Ti,j in the matrix T . These three figures show
these three dependencies Ti,j = Ti−1,j⊕s(Ti,j−1), Ti−1,j = Ti,j⊕s(Ti,j−1) and Ti,j−1 =
s−1(Ti,j ⊕ Ti−1,j) respectively

l
k

m

n l
k

m

n l
k

m

n

Fig. 3. The figure from left to right shows the Properties 1, 2 and 3 respectively. If the
dark areas are known the rest of the matrix is uniquely defined

l
k

m

n l
k

m

n

Fig. 4. Illustration of the Properties 4 and 5. If the bottom row or the rightmost
column is known, the shaded triangle is uniquely defined

Property 5: Let k < m and l < n, such that n − l = m −
k. If the elements (Tm,j)j=l,l+1,...,n from row m is known then half the
square matrix (Ti,j)

i=k,k+1,...,m
j=l,l+1,...,n is uniquely determined under the diagonal

(Ti,j)
i=k,k+1,...,m
j=n+k−i,(n+k−i)+1,...,n using rule 2 (Figure 4).

Observe that the Properties 4 and 5 are similar and define exactly the same
triangle, and that the Properties 1, 2 and 3 define the same rectangle. In the
attacks of the compression function it is useful to denote the leftmost 17, the
middle 17 and the rightmost 17 columns of the matrix T by (the matrices) T1,
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hi

T3T1

T2

Fig. 5. The figure shows the collision attack on the compression function where hi−1 =
0. The dark areas are processed line by line

T2, respectively T3 as shown in Figure 1. Notice that the first and last column
of T2 overlap with the last column of T1 and the first column of T3.

B Collision Attacks on the Compression Function of
MD2

B.1 Collision Attack Where hi−1 = 0

The first part of this section is from [6] with our extensions at the end. We shall
consider a special case where hi−1 = 0 and as a consequence mi = hi−1 ⊕mi

and the first rows of T2 and T3 are equal. Since the first row of T1 and the first
element in row 1 are known (defined to be 0), we are able to calculate row 1 of
T1. Now we try to find values of mi such that the 13 first rows of T2 and T3 are
equal, and in order to be equal the leftmost columns of T2 and T3 must be equal
and the rightmost columns of T2 and T3 must be equal. Since the rightmost
column of T2 coincide with the leftmost column of T3, the four of them must
be equal in order for the matrices to be equal. Having the rightmost element
(T1)1,16 in the first row of T1, we know that we must have:

(T1)1,16 = (T2)1,0 = (T3)1,0 = (T2)1,16 = (T3)1,16 = T1,48

and if we know T1,48 we know that T2,0 = T1,48 + 0mod 256, so it is simple to
complete row 2 of T1. We continue until row k:

(T1)i,16 = (T2)i,16 = (T3)i,16 for i = 1, 2, . . . , k

and calculate row k + 1 of T1.
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The k values in the right column of T2 and T3 are now known and we might
complete a triangle in the rows 1, 2, . . . , k of these two matrices according to
property 2, shown in Figure 5. The figure shows the situation where 13 rows
(k = 13) are preprocessed and the triangles are completed, and there are 3
remaining bytes to be chosen to complete row 13 of T2 and T3. The 224 possible
choices of these bytes will determine 224 different first rows mi = hi−1 ⊕ mi

(property 3) and will complete row 13 in both of these matrices, and since the
first 14 rows of T1 is already fixed we have a multi collision in:

((T1)i,0)i=1,2,...,14

containing (28)3 different messages mi. It remains to find collisions among these
in the last 4 rows of column 0:

((T1)i,0)i=15,16,17,18

and equal values in row 0 and column 0 of T1 give an equal matrix by property 1,
and we also have collisions in 16 bytes of the last row of T1, which is the chaining
variable hi. The expected number of collisions in this case is approximately

(((28)3)2/2)/((28)4) = 215 = 32768

in theory, and we found 32784 collisions in practice. In [6] k = 14 and 2 bytes
are varied, and the expected number of collisions were 128 and in practice there
were 141 collisions, but to decrease k to get more collisions is not mentioned
explicitly in the paper.

In general we would expect

(((28)16−k)2/2)/((28)18−(k+1)) = 28(15−k)−1

collisions, only depending on the choice of k. The memory and computational
complexity is proportional to the number of bytes varied: 28(16−k).

In the preimage attack described earlier in this paper it is advantageous to
use this attack when h0 = 0 and to get collisions in m1. It is possible to get
more than 2 different m1 such that all of them give the same output h1, and if
so we have a multiple collision. If we look for a d-tuple collision and we are able
to vary b = 16− k bytes in the first phase of the attack, we expect(

28b

d

)
/28(b+1)(d−1) ≈ 28(b+1−d)/d!

d-tuple collisions. If b = 9 and d = 8 we expect ≈ 20,7 ≥ 1 multiple collisions of
size 8, and the complexity is approximately 272.

There are similar attacks on the compression function where
mi = 0 or where hi−1 ⊕ mi = 0. For these two attacks and
the one where hi−1 = 0 there are generalizations which are de-
scribed in detail in an extended version of the paper available at
http://www.ii.uib.no/~johnm/publications/md2-procExtended.pdf
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Abstract. We consider the 3GPP confidentiality and integrity schemes
that were adopted by Universal Mobile Telecommunication System, an
emerging standard for third generation wireless communications. The
schemes, known as f8 and f9, are based on the block cipher KASUMI.
Although previous works claim security proofs for f8 and f9′, where
f9′ is a generalized version of f9, it was shown that these proofs are
incorrect; it is impossible to prove f8 and f9′ secure under the standard
PRP assumption on the underlying block cipher. Following the results,
it was shown that it is possible to prove f8′ and f9′ secure if we make
the assumption that the underlying block cipher is a secure PRP-RKA
against a certain class of related-key attacks; here f8′ is a generalized
version of f8. Needless to say, the assumptions here are stronger than
the standard PRP assumptions, and it is natural to seek a practical way
to modify f8′ and f9′ to establish security proofs under the standard
PRP assumption. In this paper, we propose f8+ and f9+, slightly mod-
ified versions of f8′ and f9′, but they allow proofs of security under the
standard PRP assumption. Our results are practical in the sense that we
insist on the minimal modifications; f8+ is obtained from f8′ by setting
the key modifier to all-zero, and f9+ is obtained from f9′ by setting the
key modifier to all-zero, and using the encryptions of two constants in
the CBC MAC computation.

1 Introduction

Background. Within the security architecture of the 3rd Generation Partnership
Project (3GPP) system there are two standardized constructions: A confidential-
ity scheme f8, and an integrity scheme f9 [1]. 3GPP is the body standardizing
the next generation of mobile telephony. Both f8 and f9 are modes of opera-
tions based on the block cipher KASUMI [2]. f8 is a symmetric encryption scheme
which is a variant of the Output Feedback (OFB) mode with full feedback, and f9
is a Message Authentication Code (MAC) which is a variant of the CBC MAC.

Provable Security. Provable security is a standard security goal for block cipher
modes of operations. Indeed, many of the block cipher modes of operations are

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 268–283, 2005.
c© International Association for Cryptologic Research 2005
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provably secure assuming that the underlying block cipher is a secure pseudo-
random permutation, or a super-pseudorandom permutation [25]. For example,
we have CTR mode [3] and CBC encryption mode [3] for symmetric encryption
schemes, PMAC [9], XCBC [8] and OMAC [16] for message authentication codes,
and IAPM [20], OCB mode [26], CCM mode [27, 19], EAX mode [6], CWC mode
[23] and GCM mode [24] for authenticated encryption schemes.

Therefore, it is natural to ask whether f8 and f9 are provably secure if the
underlying block cipher is a secure pseudorandom permutation. Making this
assumption, it was claimed that f8 is a secure symmetric encryption scheme
in the sense of left-or-right indistinguishability [21] and that f9′ is a secure
MAC [13], where f9′ is a generalized version of f9. However, these claims were
disproven [17]. One of the remarkable aspects of f8 and f9 is the use of a
non-zero constant called a “key modifier,” or KM. In the f8 and f9 schemes,
KASUMI is keyed with K and K ⊕ KM. The paper [17] constructs a secure
pseudorandom permutation F with the following property: For any key K, the
encryption function with key K is the decryption function with K ⊕KM. That
is, FK(·) = F−1

K⊕KM(·). Then it was shown that f8 and f9′ are insecure if F is
used as the underlying block cipher. This result shows that it is impossible to
prove the security of f8 and f9′ even if the underlying block cipher is a secure
pseudorandom permutation.

Generalized Versions of f8 and f9: f8′ and f9′. Given the results in [17], it is
logical to ask if there are assumptions under which f8 and f9 are actually secure
and, if so, what those assumptions are. Because of the constructions’ use of keys
related by fixed xor differences, the natural conjecture is that if the constructions
are actually secure, then the minimum assumption on the block cipher must be
that the block cipher is secure against some class of xor-restricted related-key
attacks, as introduced in [7] and formalized in [5].

The paper [14] proved that the above hypotheses are in fact correct and, in
doing so, [14] clarifies what assumptions are actually necessary in order for the
f8 and f9 modes to be secure. In more detail, [14] first considers a generalized
version of f8, which is called f8′. f8′ is a nonce-based symmetric encryption
scheme, and is the natural nonce-based extension of the original f8. Then it
is shown that f8′ is a secure nonce-based deterministic symmetric encryption
mode in the sense of indistinguishability from random strings if the underlying
block cipher is secure against related-key attacks in which an adversary is able
to obtain chosen-plaintext samples of the underlying block cipher using two keys
related by a fixed known xor difference.

Then [14] next considers a generalized version of f9, which is called f9′.
f9′ is a deterministic MAC, and is a natural extension of f9 that gives the
user, or adversary, more liberty in controlling the input to the underlying CBC
MAC core. Then it is shown that f9′ is a secure pseudorandom function, which
provably implies a secure MAC, if the underlying block cipher resists related-key
attacks in which an adversary is able to obtain chosen-plaintext samples of the
underlying block cipher using two keys related by a fixed known xor difference.

onfidentialityC



270 T. Iwata and K. Kurosawa

Our Contribution. Because the assumptions made for f8′ and f9′ are stronger
than the standard PRP assumptions (as proven necessary in [17]), in this paper,
we consider the following question; What is the minimal modification on f8′ and
f9′ to achieve the provable security results with the standard PRP assumptions
on the underlying block cipher? We view the answer to this question gives us
an important practical result. Namely, f8 and f9 can be easily replaced with
minimal cost, especially to be prepared for the worst case that KASUMI is known
to be vulnerable to related-key attacks.

In this paper, we propose f8+ and f9+, refinements of f8′ and f9′. Unlike
f8′ and f9′, our f8+ and f9+ are provably secure with the standard PRP
assumptions. Furthermore, they require very small modifications to f8′ and f9′.
In particular,

– f8+ is obtained from f8′ by setting the key modifier to all-zero, and
– f9+ is obtained from f9′ by setting the key modifier to all-zero, using the

encryption of all-zero as the initial value of the CBC chain, and xoring the
encryption of all-one before the final encryption.

These small modifications increase the security, allowing us to prove the security
of f8+ and f9+ under the standard PRP assumption. Intuitively, this implies
that the security of f8+ and f9+ is irrelevant to the resistance of KASUMI
against related key attacks. f8+ and f9+ are provably secure if KASUMI is
merely secure in the sense of a PRP.

Our results are practical in the sense that we insist on the “minimal modi-
fication,” and therefore we are able to switch the modes easily. Although f8+

and f9+ are not competitive to CTR mode and OMAC in terms of efficiency,
we find that switching to CTR mode and OMAC are costly and expensive, and
it is quite unreasonable to switch to them just because to reduce the security
assumption on the block cipher.

We suggest the following use of our results. (1) If there is a chance to replace
f8 and f9, especially to be prepared for the worst case that KASUMI is known to
be vulnerable to related-key attacks, f8+ and f9+ are reasonable replacements
since they only require small modifications and the costs for switching should
not be too expensive. These modifications may be handled by “patching” f8 and
f9. (2) When the whole system is updated, the future system should support
more conventional modes such as CTR mode and OMAC. In this case, the cost
for replacement should not be a problem.

We prove that f8+ is secure in the sense of indistinguishability from random
strings, and f9+ is a secure pseudorandom function, which provably implies a
secure MAC, if the underlying block cipher is secure in the sense of a PRP. We
note that because of the “key reuse” nature in f8+ and f9+, their security proofs
require much elaborate treatment compared to the cases for f8′ and f9′.

Related Works. Initial security evaluation of KASUMI, f8 and f9 can be found
in [12]. Knudsen and Mitchell analyzed the security of f9′ against forgery and
key recovery attacks [22]. Blunden and Escott showed related key attacks on
reduced round KASUMI [10].
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2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits. If x and y are two
equal-length strings, then x⊕y denotes the xor of x and y. If x and y are strings,
then x‖y denotes their concatenation. Let x ← y denote the assignment of y to
x. If X is a set, let x

R← X denote the process of uniformly selecting at random
an element from X and assigning it to x. If F : {0, 1}k × {0, 1}n → {0, 1}m

is a family of functions from {0, 1}n to {0, 1}m indexed by keys {0, 1}k, then
we use the notation FK(D) as shorthand for F (K,D). We say F is a family
of permutations, i.e., a block cipher, if n = m and FK(·) is a permutation on
{0, 1}n for each K ∈ {0, 1}k. Let Rand(n,m) denote the set of all functions from
{0, 1}n to {0, 1}m. When we refer to the time of an algorithm or experiment in
the provable security sections of this paper, we include the size of the code (in
some fixed encoding). There is also an implicit big-O surrounding all such time
references.

PRPs. The PRP notion was introduced in [25] and later made concrete in [4].
Let Perm(n) denote the set of all permutations on {0, 1}n, and let E :

{0, 1}k × {0, 1}n → {0, 1}n be a family of permutations, i.e., a block cipher.
Let A be an adversary with access to an oracle and returns a bit. Then

Advprp
E (A) def=

∣∣∣Pr(K R← {0, 1}k : AEK(·) = 1)− Pr(G R← Perm(n) : AG(·) = 1)
∣∣∣

is defined as the PRP-advantage of A on E. Intuitively, we say that E is a secure
PRP if the PRP-advantage of all adversaries using reasonable resources is small.

We briefly remark that modern block ciphers, e.g., AES [11], are designed to
be secure PRP.

3 Specifications of f8, f9, f8′ and f9′

3GPP Confidentiality Algorithm f8 [1]. f8 is a symmetric encryption scheme
standardized by 3GPP 1. It uses a block cipher KASUMI : {0, 1}128×{0, 1}64 →
{0, 1}64 as the underlying primitive. The f8 key generation algorithm returns a
random 128-bit key K. The f8 encryption algorithm takes a 128-bit key K, a
32-bit counter COUNT, a 5-bit radio bearer identifier BEARER, a 1-bit direc-
tion identifier DIRECTION, and a message M ∈ {0, 1}∗ to return a ciphertext
C, which is the same length as M . Also, it uses a 128-bit constant KM = (01)64

(or 0x55...55 in hexadecimal) called the key modifier. In more detail, the en-
cryption algorithm is defined in Fig. 1. In Fig. 1, [i − 1]64 denotes the 64-bit
binary representation of i− 1. The decryption algorithm, which takes COUNT,
BEARER, DIRECTION, and a ciphertext C as input and returns a plaintext
M , is defined in the natural way.

1 The original specification [1] refers f8 as a symmetric synchronous stream cipher.
The specification presented here is fully compatible with the original one.

How to Enhance the Security of the 3GPP onfidentialityC
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Algorithm f8-EncryptK(COUNT, BEARER, DIRECTION, M)
m ← �|M |/64	
Y [0] ← 064

A ← COUNT‖BEARER‖DIRECTION‖026

A ← KASUMIK⊕KM(A)
For i ← 1 to m do:

X[i] ← A ⊕ [i − 1]64 ⊕ Y [i − 1]
Y [i] ← KASUMIK(X[i])

C ← M ⊕ (the leftmost |M | bits of Y [1]‖ · · · ‖Y [m])
Return C

Fig. 1. Algorithm f8-EncryptK(COUNT, BEARER, DIRECTION, M)

Since we analyze and prove results about a variant of f8 whose encryption al-
gorithm takes a nonce as input in lieu of COUNT, BEARER, and DIRECTION,
we do not describe the specifics of how COUNT, BEARER, and DIRECTION
are used in real 3GPP applications. We do note that 3GPP applications will never
invoke the f8 encryption algorithm twice with the same (COUNT,BEARER,
DIRECTION) triple, which means that our nonce-based variant is appropriate.

3GPP Integrity Algorithm f9 [1]. f9 is a message authentication code stan-
dardized by 3GPP. It uses KASUMI as the underlying primitive. The f9 key
generation algorithm returns a random 128-bit key K. The f9 tagging algo-
rithm takes a 128-bit key K, a 32-bit counter COUNT, a 32-bit random number
FRESH, a 1-bit direction identifier DIRECTION, and a message M ∈ {0, 1}∗
and returns a 32-bit tag T . It uses a 128-bit constant KM = (10)64 (or 0xAA...AA
in hexadecimal), called the key modifier.

Let M = M [1]‖ · · · ‖M [m] be a message, where each M [i] (1 ≤ i ≤ m −
1) is 64 bits. The last block M [m] may have fewer than 64 bits. We define
pad64(COUNT,FRESH,DIRECTION,M) as follows: It concatenates COUNT,
FRESH, M and DIRECTION, and then appends a single “1” bit, followed by
between 0 and 63 “0” bits so that the total length is a multiple of 64 bits. More
precisely,

pad64(COUNT,FRESH,DIRECTION,M)
= COUNT‖FRESH‖M‖DIRECTION‖1‖063−(|M |+1 mod 64) .

Then the tagging algorithm is defined in Fig. 2. In Fig. 2, “M [1]‖ · · · ‖M [m] ←
M” is a shorthand for “break M into 64-bit blocks M [1]‖ · · · ‖M [m].” The f9
verification algorithm is defined in the natural way by tag recomputation.

As with f8, since we analyze and prove the security of a generalized version
of f9, we do not describe how COUNT, FRESH, and DIRECTION are used in
real 3GPP applications.

A Generalized Version of f8: f8′ [17, 14]. f8′ is a nonce-based deterministic
symmetric encryption scheme, which is a generalized (and weakened) version
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Algorithm f9-TagK(COUNT, FRESH, DIRECTION, M)
M ← pad64(COUNT, FRESH, DIRECTION, M)
M [1]‖ · · · ‖M [m] ← M
Y [0] ← 064

For i ← 1 to m do:
X[i] ← M [i] ⊕ Y [i − 1]
Y [i] ← KASUMIK(X[i])

T ← KASUMIK⊕KM(Y [1] ⊕ · · · ⊕ Y [m])
T ← the leftmost 32 bits of T
Return T

Fig. 2. Algorithm f9-TagK(COUNT, FRESH, DIRECTION, M)

of f8. It uses a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n as the underly-
ing primitive. Let f8′[E,Δ] be f8′, where E is used as the underlying primi-
tive and Δ is a non-zero k-bit key modifier. The f8′[E,Δ] key generation algo-
rithm returns a random k-bit key K. The f8′[E,Δ] encryption algorithm, which
we call f8′-Encrypt, takes an n-bit nonce N instead of COUNT, BEARER and
DIRECTION. That is, the encryption algorithm takes a k-bit key K, an n-bit
nonce N , and a message M ∈ {0, 1}∗ to return a ciphertext C, which is the
same length as M . Then the encryption algorithm is in Fig. 3. In Fig. 3, [i− 1]n
denotes n-bit binary representation of i − 1. Decryption is done in an obvious
way.

Notice that we treat COUNT, BEARER and DIRECTION as a nonce. That
is, we allow the adversary to choose these values. Consequently, f8′ can be
considered as a weakened version of f8 since it gives the adversary the ability
to control the entire initial value of A, rather than only a subset of the bits as
would be the case for an adversary attacking f8.

A Generalized Version of f9: f9′ [13, 22, 17, 14]. The message authentication
code f9′ is a generalized (and weakened) version of f9 that gives the user (or
adversary) almost complete control over the input the underlying CBC MAC
core. It uses a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n as the underlying
primitive. Let f9′[E,Δ, l] be f9′, where E is used as the underlying block cipher,
Δ is a non-zero k-bit key modifier, and the tag length is l, where 1 ≤ l ≤ n. The
key generation algorithm returns a random k-bit key K. The tagging algorithm,
which we call f9′-Tag, takes a k-bit key K and a message M ∈ {0, 1}∗ as input
and returns an l-bit tag T .

Let M = M [1]‖ · · · ‖M [m] be a message, where each M [i] (1 ≤ i ≤ m − 1)
is n bits. The last block M [m] may have fewer than n bits. In f9′, we use pad′n
instead of pad64. pad′n(M) works as follows: It simply appends a single “1” bit,
followed by between 0 and n − 1 “0” bits so that the total length is a multiple
of n bits. More precisely,

pad′n(M) = M‖1‖0n−1−(|M | mod n) . (1)

How to Enhance the Security of the 3GPP onfidentialityC
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Thus, we simply ignore COUNT, FRESH and DIRECTION. Equivalently, we
consider them as a part of the message. The rest of the tagging algorithm is the
same as f9. The pseudocode is given in Fig. 5. In Fig. 5, “M [1]‖ · · · ‖M [m] ←M”
is a shorthand for “break M into n-bit blocks M [1]‖ · · · ‖M [m].”

Note that the adversary is allowed to choose COUNT, FRESH, and DIREC-
TION since f9′ treats them as a part of the message. In this sense, f9′ can be
considered as a weakened version of f9.

4 Proposed Schemes: Specifications of f8+ and f9+

4.1 Proposed Refinement of f8′: f8+

f8+ is a nonce-based deterministic symmetric encryption scheme, which is a
refinement of f8′. Definening f8+ is simple: we set Δ← 0n in f8′.

For full specification, f8+ uses a block cipher E : {0, 1}k ×{0, 1}n → {0, 1}n

as the underlying primitive. Let f8+[E] be f8+, where E is used as the under-
lying primitive. The f8+[E] key generation algorithm returns a random k-bit
key K. The f8+[E] encryption algorithm, which we call f8+-Encrypt, takes an
n-bit nonce N . That is, the encryption algorithm takes a k-bit key K, an n-bit
nonce N , and a message M ∈ {0, 1}∗ to return a ciphertext C, which is the same
length as M . Then the encryption algorithm is given in Fig. 4.

Algorithm f8′-EncryptK(N, M)
m ← �|M |/n	
Y [0] ← 0n

A ← N
A ← EK⊕Δ(A)
For i ← 1 to m do:

X[i] ← A ⊕ [i − 1]n ⊕ Y [i − 1]
Y [i] ← EK(X[i])

C ← M ⊕ (the leftmost |M | bits
of Y [1]‖ · · · ‖Y [m])

Return C

Fig. 3. Algorithm f8′-EncryptK(N, M)

Algorithm f8+-EncryptK(N, M)
m ← �|M |/n	
Y [0] ← 0n

A ← N
A ← EK(A)
For i ← 1 to m do:

X[i] ← A ⊕ [i − 1]n ⊕ Y [i − 1]
Y [i] ← EK(X[i])

C ← M ⊕ (the leftmost |M | bits
of Y [1]‖ · · · ‖Y [m])

Return C

Fig. 4. Algorithm f8+-EncryptK(N, M)

Decryption is done in an obvious way.
Note that the only difference between f8+-EncryptK(·, ·) and f8′-EncryptK(·, ·)

is in the 4-th line. With this small modification, as we will show shortly, f8+

has much higher security assurance than that of f8′.

4.2 Proposed Refinement of f9′: f9+

f9+ is a message authentication code, which is a refinement of f9′. As with f8+,
definening f9+ is simple:
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– We set Δ← 0n in f9′,
– We set the initial value of the CBC chain to be EK(0n) instead of 0n, and
– We xor EK(1n) before the last encryption.

For full specification, f9+ uses a block cipher E : {0, 1}k ×{0, 1}n → {0, 1}n

as the underlying primitive. Let f9+[E, l] be f9+, where E is used as the under-
lying block cipher, and the tag length is l, where 1 ≤ l ≤ n. The key generation
algorithm returns a random k-bit key K. The tagging algorithm, which we call
f9+-Tag, takes a k-bit key K and a message M ∈ {0, 1}∗ as input and returns an
l-bit tag T . f9+ uses pad′n(·) defined in (1). The pseudocode is given in Fig. 6. In
Fig. 6, “M [1]‖ · · · ‖M [m] ← M” is a shorthand for “break M into n-bit blocks
M [1]‖ · · · ‖M [m].”

Algorithm f9′-TagK(M)
M ← pad′

n(M)
M [1]‖ · · · ‖M [m] ← M
Y [0] ← 0n

For i ← 1 to m do:
X[i] ← M [i] ⊕ Y [i − 1]
Y [i] ← EK(X[i])

T ← EK⊕Δ(Y [1] ⊕ · · · ⊕ Y [m])
T ← the leftmost l bits of T
Return T

Fig. 5. Algorithm f9′-TagK(M)

Algorithm f9+-TagK(M)
M ← pad′

n(M)
M [1]‖ · · · ‖M [m] ← M
Y [0] ← EK(0n)
For i ← 1 to m do:

X[i] ← M [i] ⊕ Y [i − 1]
Y [i] ← EK(X[i])

T ← EK(Y [1] ⊕ · · · ⊕ Y [m] ⊕ EK(1n))
T ← the leftmost l bits of T
Return T

Fig. 6. Algorithm f9+-TagK(M)

The verification algorithm is defined in the natural way.
Notice that the only difference between f9+-TagK(·) and f9′-TagK(·) is in the

3-rd and 7-th lines. With these small modifications, as we will show shortly, f9+

has much higher security assurance than that of f9′.

4.3 Design Rational on f9+

One might try to set Δ← 0n in f9′ (which eliminates the needs of related keys),
and preserve the rest of f9′. Unlike the case for f8+, this does not work. In fact,
the above mentioned MAC is easily forgeable. The attack proceeds as follows.

1. The adversary A first queries a message M1 such that 1 ≤ |M1| < n, to
obtain the tag T1 = EK(EK(pad′n(M1))).

2. Then A queries a message M2 ← pad′n(M1)‖0n‖M ′
2, where M ′

2 is a string
such that |M ′

2| < n and pad′n(M ′
2) = T1 ⊕ pad′n(M1), to obtain the tag T2.

By a simple calculation, one can verify that T2 = EK(T1).
3. Next A queries a message M3 ← T1‖M ′

3, where M ′
3 is a string such that

|M ′
3| < n and pad′n(M ′

3) = T1 ⊕ T2, to obtain the tag T3. By a simple
calculation, one can verify that T3 = EK(0n).
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4. Finally, A outputs a forgery attempt (M∗, T ∗), where M∗ ← 0n‖T ′
3, T ′

3 is a
string such that |T ′

3| < n and pad′n(T ′
3) = T3, and T ∗ ← T3.

There are several cases where this attack fails. These cases are T1⊕pad′n(M1) =
0n (since M ′

2 does not exist), T1 ⊕ T2 = 0n (since M ′
3 does not exist), and

M∗ = M3 (since M∗ should be a new massage). Assuming that the underlying
block cipher is a random permutation, these cases occur with only negligible
probabilities. Therefore, the above attack succeeds in forgery with overwhelming
probability even if the underlying block cipher is a random permutation 2.

Therefore, merely setting Δ← 0n does not work. This motivates us to “mask”
the input to the first block cipher invocation, as well as the final invocation. We
used Y [0] ← EK(0n) and EK(1n) as masks, however, any other constant is fine.

5 Security of f8+

Definitions. Before proving the security of f8+, we first formally define what
we mean by a nonce-based encryption scheme, and what it means for such an
encryption scheme to be secure.

A nonce-based symmetric encryption scheme SE = (K, E ,D) consists of three
algorithms and is defined for some nonce length n. The randomized key genera-
tion algorithm K takes no input and returns a random key K. The stateless and
deterministic encryption algorithm takes a key K, a nonce N ∈ {0, 1}n, and a
message M ∈ {0, 1}∗ as input and returns a ciphertext C such that |C| = |M |;
we write C ← EK(N,M). The stateless and deterministic decryption algorithm
takes a key K, a nonce N ∈ {0, 1}n, and a ciphertext C ∈ {0, 1}∗ as input
and returns a message M such that |M | = |C|; we write M ← DK(N,C).
For consistency, we require that for all keys K, nonces N , and messages M ,
DK(N, EK(N,M)) = M .

We adopt the strong notion of privacy for nonce-based encryption schemes
from [26]. This notion, which we call indistinguishability from random strings,
provably implies the more standard notions given in [3]. Let $(·, ·) denote an
oracle that on input a pair of strings (N,M) returns a random string of length
|M |. If A is an adversary with access to an oracle, then

Advpriv
SE (A) def=

∣∣∣Pr(K R← K : AEK(·,·) = 1)− Pr(A$(·,·) = 1)
∣∣∣

is defined as the PRIV-advantage of A in distinguishing the outputs of the
encryption algorithm with a randomly selected key from random strings. We
say that A is nonce-respecting if it never queries its oracle twice with the same
nonce value. Intuitively, we say that an encryption scheme preserves privacy
under chosen-plaintext attacks if the PRIV-advantage of all nonce-respecting
adversaries A using reasonable resources is small.

2 We note that [13–p. 157, Section 2.2] shows similar attack. But the attack in [13]
cannot be applied here since padding is not considered.
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Provable Security Results. Let p8+[n] be a variant of f8+ that uses a random
function on n bits instead of EK . Specifically, the key generation algorithm for
p8+[n] returns a randomly selected function R from Rand(n, n). The encryption
algorithm for p8+[n], p8+-Encrypt, takes R as a “key” and uses it instead of EK .
The decryption algorithm is defined in the natural way.

We first upper-bound the advantage of an adversary in breaking the privacy
of p8+[n]. Let (Ni,Mi) denote a privacy adversary’s i-th oracle query. If the
adversary makes exactly q oracle queries, then we define the total number of
blocks for the adversary’s queries as σ =

∑
1≤i≤q
|Mi|/n�.

Lemma 1. Let p8+[n] be as described above and let A be a nonce-respecting
privacy adversary which asks at most q queries totaling at most σ blocks. Then

Advpriv
p8+[n](A) ≤ 2σ2

2n
. (2)

A proof sketch is given in Appendix A, and a proof is given in the full version
of this paper [18].

We now present our main result for f8+ (Theorem 1 below). At a high level,
our theorem shows that if a block cipher E is a secure PRP, then the construction
f8+[E] based on E will be a provably secure encryption scheme. In more detail,
our theorem states that given any adversary A attacking the privacy of f8+[E]
and making at most q oracle queries totaling at most σ blocks, we can construct
a PRP adversary B attacking E such that B uses similar resources as A and
B has advantage Advprp

E (B) ≥ Advpriv
f8+[E](A) − 4σ2/2n. If we assume that E

is a secure PRP and that A (and therefore B) uses reasonable resources, then
Advprp

E (B) must be small by definition, and thus Advpriv
f8+[E](A) must also be

small. This means that under the assumptions on E being a secure PRP, f8+[E]
is provably secure.

Since many block ciphers, including AES and KASUMI, are believed to be a
secure PRP, this theorem means that f8+ constructions built from these block
ciphers will be provably secure.

Our main theorem statement for f8+ is given below.

Theorem 1 (Main Theorem for f8+). Let E : {0, 1}k × {0, 1}n → {0, 1}n

be a block cipher. Let f8+[E] be as described in Section 4.1. If A is a nonce-
respecting privacy adversary which asks at most q queries totaling at most σ
blocks, then we can construct a PRP adversary B against E such that

Advpriv
f8+[E](A) ≤ 4σ2

2n
+ Advprp

E (B) . (3)

Furthermore, B makes at most σ+q oracle queries and uses the same time as A.
A proof is done by applying a well known PRF/PRP switching lemma (see

[4–Proposition 2.5]), and we add (q+σ)2/2n+1 ≤ 2σ2/2n to the bound in Lemma
1, and the rest of the proof of Theorem 1 is completely standard.

Notice the difference between Theorem 1 and the result for f8′ in [14–
p. 435, Theorem 4.1]. Advpriv

f8′[E,Δ](A) is upper bounded by (3σ2 + q2)/2n+1 +

How to Enhance the Security of the 3GPP onfidentialityC
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Advprp-rka
Φ,E (B). Intuitively, f8′ preserves privacy under chosen-plaintext attacks

if the pair (EK(·), EK⊕Δ(·)) and a pair of two independent random permuta-
tions are indistinguishable, while f8+ achieves the same security goal if EK(·)
is a secure PRP.

6 Security of f9+

Definitions. Before proving the security of f9+, we formally define what we
mean by a MAC, and what it means for a MAC to be secure.

A message authentication scheme or MAC MA = (K, T ,V) consists of three
algorithms and is defined for some tag length l. The randomized key generation
algorithm K takes no input and returns a random key K. The stateless and deter-
ministic tagging algorithm takes a key K and a message M ∈ {0, 1}∗ as input and
returns a tag T ∈ {0, 1}l; we write T ← TK(M). The stateless and deterministic
verification algorithm takes a key K, a message M ∈ {0, 1}∗, and a candidate tag
T ∈ {0, 1}l as input and returns a bit b; we write b← VK(M,T ). For consistency,
we require that for all keys K and messages M , VK(M, TK(M)) = 1.

For security, we adopt a strong notion of security for MACs, namely pseudo-
randomness (PRF). In [4] it was proven that if a MAC is secure PRF, then it is
also unforgeable. If A is an adversary with access to an oracle, then

Advprf
MA(A) def=

∣∣∣Pr(K R← K : ATK(·) = 1)− Pr(g R← Rand(∗, l) : Ag(·) = 1)
∣∣∣

is defined as the PRF-advantage of A in distinguishing the outputs of the tagging
algorithm with a randomly selected key from the outputs of a random function
with the same domain and range. Intuitively, we say that a message authentica-
tion code is pseudorandom or secure if the PRF-advantage of all adversaries A
using reasonable resources is small.

Provable Security Results. Let p9+[n] be a variant of f9+ that always outputs a
full n-bit tag and that uses a random function on n bits instead of EK . Specifi-
cally, the key generation algorithm for p9+[n] returns a randomly selected func-
tions R from Rand(n, n). The tagging algorithm for p9+[n], p9+-Tag, takes R as
a “key” and uses it instead of EK . The verification algorithm is defined in the
natural way.

We first upper-bound the advantage of an adversary in attacking the pseu-
dorandomness of p9+[n]. Let Mi denote an adversary’s i-th oracle query. If an
adversary makes exactly q oracle queries, then we define the total number of
blocks for the adversary’s queries as σ =

∑
1≤i≤q |pad′n(Mi)|/n.

Lemma 2. Let p9+[n] be as described above and let A be an adversary which
asks at most q queries totaling at most σ blocks. Then

Advprf
p9+[n](A) ≤ 5σ2

2n
. (4)
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A proof sketch is given in Appendix B, and a proof is given in the full version
of this paper [18].

We now present our main result for f9+ (Theorem 2), which we interpret as
follows: our theorem shows that if a block cipher E is a secure PRP, then the
construction f9+[E, l] based on E will be a provably secure message authen-
tication code. In more detail, we show that given any adversary A attacking
f9+[E, l] and making at most q oracle queries totaling at most σ blocks, we can
construct a PRP adversary B against E such that B uses similar resources as
A and B has advantage Advprp

E (B) ≥ Advprf
f9+[E,l](A)− 10σ2/2n. If we assume

that E is a secure PRP and that A (and therefore B) uses reasonable resources,
then Advprp

E (B) must be small by definition. Therefore Advprf
f9+[E,l](A) must

be small as well, proving that under the assumption on E being a secure PRP,
f9+[E, l] is provably secure.

Since many block ciphers, including AES and KASUMI, are believed to be a
secure PRP, this theorem means that f9+ constructions built from these block
ciphers will be provably secure.

The precise theorem statement is as follows:

Theorem 2 (Main Theorem for f9+). Let E : {0, 1}k×{0, 1}n → {0, 1}n be
a block cipher, and let l, 1 ≤ l ≤ n, be a constant. Let f9+[E, l] be as described
in Section 4.2. If A is a PRF adversary which asks at most q queries totaling at
most σ blocks, then we can construct a PRP adversary B against E such that

Advprf
f9+[E,l](A) ≤ 10σ2

2n
+ Advprp

E (B) . (5)

Furthermore, B makes at most σ + q + 2 oracle queries and uses the same time
as A.

As is the case in Theorem 1, a proof is done by applying the PRF/PRP
switching lemma, and (q + σ + 2)2/2n+1 ≤ 9σ2/2n+1 is added to the bound in
Lemma 2, and the rest of the proof is standard.

Notice the difference between Theorem 2 and the result for f9′ in [14–p. 438,
Theorem 5.1]. Advprf

f9′[E,Δ,l](A) is upper bounded by (3q2 + 2σ2 + 2σq)/2n+1 +

Advprp-rka
Φ,E (B). Intuitively, f9′ is pseudorandom if the pair (EK(·), EK⊕Δ(·))

and a pair of two independent random permutations are indistinguishable, while
f9+ is pseudorandom if EK(·) is a secure PRP.

7 Conclusion

In this paper, we proposed f8+ and f9+, which are refinements of the original
f8′ and f9′. f8+ and f9+ are designed with two goals; (1) minimal modifica-
tions to f8′ and f9′, and (2) provable security results with the standard PRP
assumption on the underlying block cipher. Since we make only “small” modi-
fications, these modes can be practical candidates for future replacement of f8
and f9. Especially, we believe that f8+ is simple enough to be replaced easily.

How to Enhance the Security of the 3GPP onfidentialityC
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A Proof Sketch of Lemma 1

We sketch the proof of Lemma 1 here, leaving the details to [18]. The adversary
has an oracle which is either p8+-EncryptR(·, ·) or $(·, ·). We fix some notation.
For q and σ in Lemma 1, let m1, . . . , mq be integers such that mi ≥ 1 and
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σ ≥ m1 + · · · + mq. Let N1, . . . , Nq be fixed and distinct bit strings such that
|Ni| = n. Let M1, . . . , Mq be arbitrarily fixed bit strings such that |Mi| = min,
and let Mi = Mi[1]‖ · · · ‖Mi[mi], where Mi[j] ∈ {0, 1}n. Also, let C1, . . . , Cq be
fixed bit strings such that |Ci| = min and, let Ci = Ci[1]‖ · · · ‖Ci[mi], where
Ci[j] ∈ {0, 1}n. Assume C1, . . . , Cq satisfy the following condition:

For any i (1 ≤ i ≤ q), the multiset
{0n,Mi[1]⊕ Ci[1]⊕ [1]n, . . . , Mi[mi − 1]⊕ Ci[mi − 1]⊕ [mi − 1]n}

has mi distinct points
(6)

(there is no condition on C1[m1], . . . , Cq[mq]).
For (Ni,Mi) and the function R, let Ai = R(Ni), and Mi[0]⊕Ci[0] = 0n. For

1 ≤ j ≤ mi, let Xi[j] = Ai⊕Mi[j−1]⊕Ci[j−1]⊕ [j−1]n and Yi[j] = R(Xi[j]).
Further, for 1 ≤ i ≤ q, let Xi

def= {Xi[j] | 1 ≤ j ≤ mi}, and N
def= {Ni | 1 ≤ i ≤

q}.
Then for randomly chosen At (this will fix Xt), define the following (t− 1)+

1 = t conditions: Cond. A-s (1 ≤ s ≤ t− 1) and Cond. B.

Cond. A-s (1 ≤ s ≤ t− 1): Xs ∩Xt �= ∅.
Cond. B: N ∩Xt �= ∅.

We say that BAD[t] occurs if at least one of the above t events occurs.
Intuitively, we show that if all the query-answer pairs satisfy (6) and BAD[t]

does not occur, then the adversary cannot distinguish between p8+-EncryptR(·, ·)
and $(·, ·). The proof is completed by upper bounding the probability that some
query-answer pair fails to satisfy (6), or some BAD[t] occurs.

B Proof Sketch of Lemma

To prove Lemma 2, we define p9+-E[n], a variant of p9+[n]. The tagging al-
gorithm for p9+-E[n] takes only messages of length multiple of n. That is, we
consider that messages have already padded. Also, it does not perform the final
encryption and it does not mask with R(1n). Specifically, the key generation
algorithm for p9+-E[n] returns a randomly selected function R from Rand(n, n).
The tagging algorithm for p9+-E[n], p9+-E-Tag, takes R as a “key” and a mes-
sage M such that |M | = mn for some m ≥ 1. The pseudocode is given in
Fig. 7. “M [1]‖ · · · ‖M [m] ← M” is a shorthand for “break M into n-bit blocks
M [1]‖ · · · ‖M [m].” The verification algorithm is defined in the natural way.

We next fix some notation. For q and σ in Lemma 2, let m1, . . . ,mq be
integers such that mi ≥ 1 and σ ≥ m1 + · · ·+ mq. Let M1, . . . , Mq be fixed and
distinct bit strings such that |Mi| = min.

Then we have the following lemma.

Lemma 3. Let q, m1, . . . , mq, σ, M1, . . . , Mq be as described above. Then the
probablity of

2
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Algorithm p9+-E-TagR(M)
M [1]‖ · · · ‖M [m] ← M
Y [0] ← R(0n)
For i ← 1 to m do:

X[i] ← M [i] ⊕ Y [i − 1]
Y [i] ← R(X[i])

Return Y [1] ⊕ · · · ⊕ Y [m]

Fig. 7. Algorithm p9+-E-TagR(M)

– 1 ≤ ∃i < ∃j ≤ q, p9+-E-TagR(Mi) = p9+-E-TagR(Mj), or
– 1 ≤ ∃i ≤ q, R(1n) is used in the computation of p9+-E-TagR(Mi)

is at most 3σ2/2n where the probability is taken over the random choice of R
R←

Rand(n, n).

Given the above Lemma 3, it is easy to prove the following lemma.

Lemma 4. Let q and σ be as in Lemma 2. Also, let M1, . . . , Mq be arbitrarily
fixed and distinct bit strings, and let T1, . . . , Tq be arbitrarily fixed n-bit strings.
Then

Pr(R R← Rand(n, n) : 1 ≤ ∀i ≤ q, p9+-TagR(Mi) = Ti) ≥
1

2qn

(
1− 5σ2

2n

)
.

Given the above lemma, the proof of Lemma 2 is standard.
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Abstract. This paper introduces CCFB and CCFB+H, two patent-free
authenticated encryption schemes. CCFB+H also supports the authenti-
cation of associated data. Our schemes can employ any block cipher and
are provably secure under standard assumptions. The schemes and their
proofs of security are simple and straightforward. CCFB and CCFB+H
restrict the sizes of nonce and authentication tags and can, depending on
these sizes, perform significantly better than both generic composition
and other two-pass schemes for authenticated encryption, such as the
EAX mode.

Keywords: authenticated encryption, associated data, provable secu-
rity, OMAC.

1 Introduction

An Authenticated Encryption (AE) scheme is a secret-key cryptosystem designed
for simultaneously protecting both a message’s privacy and its authenticity. Tra-
ditionally, these two security goals had been handled separately by the means
of encryption schemes and message authentication codes (MACs). In practice,
however, the same message often needs to be kept both private and authentic,
and gluing together encryption and message authentication is surprisingly tricky
and error-prone. Hence, a couple of block cipher based AE schemes have been
developed recently.

Even more recently, people discovered that AE is not quite sufficient. Often,
some header (associated data, AD) is not confidential, but vital for authentica-
tion. Authenticated Encryption with Associated Data (AEAD) schemes authen-
ticate both the message and the associated data, but only encrypt the message.
Most of today’s AE and AEAD schemes are either “two-pass” schemes and thus
as slow as encrypting and authenticating independently, or “one-pass” schemes
whose usage is hindered by the patent situation. This paper proposes a new two-
pass scheme. Depending on the size of the authentication tag, our solution can
run significantly faster than generic composition or other non-patented two-pass
AE(AD) schemes. Another advantage is simplicity: compared to other AE(AD)
schemes, our solution and its proof of security is very simple and straightforward.
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1.1 The Development of Authenticated Encryption

In 2000, Bellare and Namprempre proposed generic composition: a privacy-
protecting encryption scheme and a MAC are used jointly (but securely) under
independent keys [3]. This is not very efficient – it takes the time to encrypt plus
the time to authenticate and makes block cipher based authenticated encryption
twice as slow as either encryption or authentication. The generic approach can
provide AEAD as well as AE. Generic composition can be minimal-expanding1,
i.e. the size of a ciphertext is the plaintext size plus τ bit for the authentication
tag, where τ is a plaintext-size-independent constant, and the forgery probability
is close to 1/2τ .

In the same year, Katz and Yung presented the RPC block cipher mode for
authenticated encryption [8]. It is a single-pass AE scheme, but the message
expansion is not minimal – it is linear in the plaintext size. Depending on the
size of the authentication tag, RPC can run significantly faster than generic AE,
but always less than twice as fast2. For historical reasons, the authors of RPC
did not consider AEAD.

In 2001, several single-pass minimal-expanding AE schemes have been pro-
posed: IAPM, OCB and XCBC [7, 13, 4]. These combine minimal expansion with
a close-to-optimal running time: for large messages, these schemes are almost as
fast as conventional encryption (without authenticity), i.e. twice as fast as the
generic approach. In 2002, a single-pass AEAD scheme based on OCB has been
proposed [12].

Unfortunately, several patents cover the usage of the fast single-pass schemes.
The patent situation has turned out to be a significant deterrence. To avoid
patents, new two-pass AEAD schemes have been developed, with one pass for
encryption and another one for authentication. The first was CCM [15], followed
by EAX, CWC, and GCM [1, 2, 9, 10, 11], which addressed some shortcomings
[14] of CCM. All these modes are minimal expanding, but as (in)efficient as
generic composition. Their main advantage over generic composition is that a
single block cipher key suffices for the entire scheme.

1.2 Contributions and Outline of This Paper

This paper proposes CCFB (Counter-CipherFeedBack) – another two-pass AE
mode for block ciphers, but with a different separation of duties between the
passes. It has been developed with low-end devices in the mind, such as smart-
cards, small embedded systems, sensor network motes, and RFID tags. CCFB
is related to RPC, which has been published before the patented single-pass
schemes. The first pass of CCFB is for privacy and “local” authentication, while
the second computes a single “global” authentication tag from the local ones.
CCFB+H is

1 ... depending on the underlying encryption and MAC scheme.
2 E.g., AES-RPC with 32-bit authentication tags is 50 % faster than AES-based

generic composition.
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– a new minimal-expanding and two-pass AEAD scheme (avoiding the patents
on single-pass schemes 3, similarly to EAX, CWC, and GCM),

– which can run significantly faster thanpreviouslypublished two-pass schemes4,
especially on low-end devices.

Like EAX, CWC, and GCM,

– CCFB+H can use any block cipher and even a pseudorandom function
(PRF) as the underlying primitive,

– it uses a single block cipher (or PRF) key for all its work, and a block cipher
is only used in encryption mode,

– CCFB+H allows the (pre-)processing of the header, independently from the
message,

– CCFB+H is provably secure under standard assumptions on the security of
the underlying block cipher or PRF,

– and we analyse our schemes’ concrete security.

A drawback, inherited from RPC, is that the sizes for nonces and authentication
tags are limited (in contrast to EAX, CWC, and GCM). More specifically, if n
is the block size of the underlying block cipher or PRF, then

δ︷ ︸︸ ︷
maximum size of nonce =

n︷ ︸︸ ︷
block size−

τ︷ ︸︸ ︷
size of authentication tag .

Section 2 describes CCFB, Section 4 analyses it with respect to the notions
of security defined in Section 3. Section 5 extends CCFB to an AEAD scheme
CCFB+H (CCFB with Header). Using OMAC [5, 6], a block cipher based mes-
sage authentication code, Sections 6 and 7 develop a block cipher based in-
stantiation of CCFB. Section 8 compares CCFB+H and EAX security-wise and
performance-wise. The proof of Theorem 2 and some figures are deferred to the
appendix.

2 CCFB Authenticated Encryption

We define CCFB authenticated encryption under a function F : {0, 1}n →
{0, 1}n. Fix the tag size τ ≤ n/2. Set δ = n − τ . The notation “(d, t) := F (·)”
implies d ∈ {0, 1}δ and t ∈ {0, 1}τ . For i ∈ {1, . . . , 2τ − 1}, we write 〈i〉τ for the
corresponding τ -bit string. We write “‖” for the concatenation of bit-strings.

3 We neither have, nor are aware of any patents or pending patents relevant to
CCFB+H. We do not intend to apply for such patents.

4 EAX and our instantiation of CCFB+H are dominated by the block cipher operations,
and can run on any low-end device capable of running block cipher operations. This
enables a “platform-independent” performance evaluation by counting the number of
block cipher calls, see Section 8. In the same section, we also explain why CWC and
GCM appear to be poor choices for low-end devices.
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If X is a bit-string of length ≥ λ, we write MSBλ(X) for the first λ bits of
X . The input for CCFB encryption consists of a nonce N ∈ {0, 1}δ (shorter
nonces can be padded), and a message M of any length |M | between 1 bit and
(2τ − 3)δ bit. The algorithm is described in Figure 1. See also Figures 2 and 3
for an illustration of CCFB encryption.

Algorithm: CCFB encryption.
Input: nonce N ∈ {0, 1}δ and M ∈ {0, 1}∗, 1 ≤ |M | ≤ (2τ − 3)δ;
First pass:

1. parse M as (M1, . . . , Mm) with
|M1| = · · · = |Mm−1| = δ, |Mm| ∈ {1, . . . , δ};

2. C0 := N ;
3. for 1 ≤ i ≤ m− 1: (tmp, Ai) := F (Ci−1, 〈i〉τ );

Ci := tmp⊕Mi;
4. (tmp, Am) := F (Cm−1, 〈m〉τ );
5. if |Mm| = δ then d := 1; pad := ()(∗empty string∗);

else d := 2; pad := (1||0δ−|Mm|−1);
6. Cm := MSB|Mm|(tmp)⊕Mm;
7. C′ := tmp⊕ (Mm||pad);
8. (dummy, Am+1) := F (C′, 〈m + d〉τ );

Second pass:
9. T := A1 ⊕ · · · ⊕Am+1;

Output: ciphertext (C1, . . . , Cm, T ) with
C1, . . . , Cm−1 ∈ {0, 1}δ, and Cm ∈ {0, 1}|Mm|.

Fig. 1. CCFB encryption under F : {0, 1}δ × {0, 1}τ → {0, 1}δ × {0, 1}τ

Observe that if the length |M | of M is a multiple of δ, i.e., |Mm| = δ, steps
3 to 8 simplify to the following short algorithm:

– for 1 ≤ i ≤ m: (tmp, Ai) := F (Ci−1, 〈i〉τ );
Ci := tmp⊕Mi;

– (dummy, Am+1) := F (Cm, 〈m + 1〉τ );

m+dm321

C[1] C[2] C[3]

M[1] M[2] M[3]

C[m]

A[1] A[2] A[3] A[m] A[m+1]

M[n]

pad

C[0]

N

C’

Fig. 2. 1st phase of CCFB encryption: compute the Ci and the local tags Ai; d ∈ {1, 2}
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321

C[1] C[2] C[3]

M[1] M[2] M[3] M[n]

m

C[m]

pad

m+d

TN

C[0] C’

Fig. 3. Full CCFB encryption: The global tag T is computed in the second phase

An |M |-bit message M is split into m = 
|M |/δ�+1 blocks Mi, and encrypt-
ing M requires 2m XORs and m + 1 random function (or block cipher) calls.
Thus, CCFB runs at essentially the same speed as RPC [8]. The most important
differences between CCFB and RPC, cf. Figure 7 in the appendix, are:

– CCFB employs CipherFeedBack, where RCB uses the ECB mode. Accord-
ingly, RPC assumes F to be a permutation.

– The output of RPC consists of the encryption blocks Ci and the local au-
thentication tags Ai. CCFB extends RPC by the second pass, which makes
CCFB minimal-expanding. The output of CCFB is a single “global” authen-
tication tag T =

⊕
Ai.

– To protect against cut-and-paste attacks, RPC requires a message encoding
with reserved “start” and “stop” blocks. CCFB does not need a message
encoding.

Given a nonce N ∈ {0, 1}δ and a ciphertext C = (C1, . . . , Cm, T ), CCFB de-
cryption is straightforward and needs as much computation as the encryption,
see Figure 6 in the appendix.

As ususal for modes of operations, nonces must not be re-used. E.g., if we
encrypt two messages (M1, . . . , Mm) and (M ′

1, . . . , M
′
m′) under the same nonce,

the corresponding first ciphertext blocks satisfy C1 ⊕ C′
1 = M1 ⊕M ′

1.

3 Notions of Security for Authenticated Encryption

Before we analyse the security of CCFB (and later CCFB+H), we have to specify
what we mean by “secure”. Our notions of security are standard, see e.g. [1, 2].
An AEAD scheme is a pair (E, D) of deterministic algorithms E for encryption
and D for decryption:

E : key× nonce× header×message→ ciphertext,

D : key× nonce× header× ciphertext → message ∪ (none).

The sets key, nonce, header, message, and ciphertext are bit-strings, i.e.,
subsets of {0, 1}∗. For simplicity, we assume key to be finite. An adversary
with access to an encryption oracle E(K, ·, ·, ·) chooses triples (N1, H1, M1),
. . . , (N q, Hq, M q) ∈ nonce×header×message and receives the corresponding
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ciphertexts Ci = E(K, N i, Hi, M i). The adversary is nonce-respecting, if for
all i �= j, N i �= N j . If nonce is finite, a nonce-randomising adversary chooses
a fresh uniformly distributed random N i ∈ nonce for each query (N i, Hi, M i).

In a privacy attack, the adversary is either given access to the real encryption
oracle, or to a fake oracle F (K, ·, ·, ·), which on input (N i, Hi, M i) returns a
random ciphertext F (N i, Hi, M i) of the same length as the real ciphertext Ci =
E(K, N i, Hi, M i). The adversay has to distinguish between both oracles. Let K
be a random key. An AEAD scheme is p-private against a class of adversaries,
if for all adversaries A of that class, the advantage in distinguishing E from F is∣∣∣Pr

[
AE(K,·,·,·) = 1

]
− Pr
[
AF (·,·,·) = 1

]∣∣∣ ≤ p.

A forger asks queries (N1, H1, M1), . . . , (N q, Hq, M q), receives the corre-
sponding ciphertexts C1, . . . , Cq, and finally chooses a ciphertext C, a nonce
N , and a header H . The forger succeeds, if (C, H) �∈ {(C1, H1) . . . , (Cq , Hq)}5
and D(K, N, H, C) �= (none).

An AEAD scheme is p-authentic against a class of forgers, if for all forgers
AF of that class and a random key K

Pr [AF succeeds] ≤ p.

An AE scheme is an AEAD scheme without a choice for the headers:
header = {0}.

4 Analysis of CCFB Authenticated Encryption

Consider a chosen plaintext scenario where the adversary A selects q messages
M1 = (M1

1 , . . . , M1
m1

), . . . , M q = (M q
1 , . . . , M q

mq
) with r =

∑
1≤i≤q mi blocks

in total. We write N1 = C1
0 , . . . , N q = Cq

0 for the corresponding nonces chosen
by A, and C1 = (C1

1 , . . . , C1
m1

, T 1), . . . , Cq = (Cq
1 , . . . , C1

mq
, T q) for the

ciphertexts. Consider the inputs for F :

Di
k =
{

(Ci
k, k + 1) if k < mi

((C′)i, mi + d) if k = mi (d = 1 if |Mm| = δ, else d = 2). (1)

Here (C′)i corresponds to the “internal” value C′ from Figure 1. An “input-
collision” is an input-pair (Di

k, Dj
k) with

Di
k = Dj

k with 1 ≤ i < j ≤ q and k ∈ {0, . . . ,min{mi, mj}}. (2)

We assume the adversaries to ask q queries to the encryption oracle with, in
total, r message blocks, i.e. r =

∑
1≤i≤q mi.

5 Even if the forger is nonce-respecting N ∈ {N1, . . . , Nq} is permissable.
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Lemma 1. For CCFB encryption under a random function F , the probability
for any nonce-respecting adversary to generate an input-collision is at most

qr

2δ+1
.

Similarly, the probability for any nonce-randomising adversary to generate an
input-collision is at most

q(r + q)
2δ+1

.

Proof. First, consider a nonce-respecting adversary. There is no input-collision
with k = 0. Thus, we can concentrate on k ≥ 1.

A collision Di
k = Dj

k implies F (Di
k−1) = F (Dj

k−1), and if Di
k−1 �= Dj

k−1,
then Pr[Di

k = Dj
k] ≤ 1/2δ. The number of triples (i, j, k) with 1 ≤ i < j ≤ q and

1 < k ≤ min{mi, mj}, is at most (q − 1)r/2. The probability that at least one
of these triples collides is thus at most (q−1)r

2 ∗ 1
2δ = (q−1)r

2δ+1 .
Second, consider a nonce-randomising adversary. If there is no input-collision

with k = 0, then the adversary happens to be nonce-respecting. The additional
chance to generate an input-collision at the level k = 0 – which is in fact a
nonce-collision – is a most (q(q − 1)/2)/2δ ≤ q2/2δ+1. The second claim follows
from qr + q2 = q(r + q). ��

Theorem 1 (Information-Theoretic Privacy of CCFB).
CCFB encryption using a random F is

qr

2δ+1
-private against nonce-respecting adversaries and

q(r + q)
2δ+1

-private against nonce-randomising adversaries.

Proof. Without any input-collision Di
k (k ≥ 0), all the inputs to the random

function F are different, all of its outputs are distributed uniformly at random.
Thus, the outputs from the “real” ecnryption oracle and the fake oracle are
distributed equally. To distinguish the oracles, the adversary would need an
input-collision. The claims follow from the bounds given in Lemma 1. ��

Theorem 2 (Information-Theoretic Authenticity of CCFB).
CCFB encryption, using a random F , is(

qr

2δ+1
+

1
2τ

)
-authentic with respect to nonce-respecting adversaries and

(
q(r + q)

2δ+1
+

1
2τ

)
-authentic with respect to nonce-randomising adversaries.

The proof will be given in the appendix.
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5 The CCFB+H AEAD Mode and Its Analysis

Let F ′ : {0, 1}∗ → {0, 1}δ be an additional random function, chosen indepen-
dently from F . Note that F ′ is defined for a variable input length, in contrast to
F . We write H ∈ {0, 1}∗ for the associate (“header”) data and tweak both the
CCFB encryption algorithm and its decryption counterpart by changing instruc-
tion 2 in Figure 1 and in Figure 6: replace C0 := N ; by: C0 := N ⊕ F ′(H);
see Figure 4 for an illustration of the modified encryption. Since CCFB+H is a
tweaked CCFB, we conveniently inherit most the analysis from CCFB.

21

C[1]

M[1] M[n]

m

C[m]

pad

m+d

TC[2]

M[2]

H

N

C[0] C’

Fig. 4. CCFB Authenticated Encryption of Message M [·] with Associated Data H

Recall the definition of q and r from the previous section.

Lemma 2. For CCFB encryption under a random F , the probability for a
nonce-respecting or nonce-randomising adversary to generate an input-collision
is at most

q(r + q)
2δ+1

.

Proof. For a nonce-randomising adversary, the result follows immediately from
the second claim of Lemma 1. We will show that for a nonce-respecting adversary,
the probability for an input-collision at level k = 0 is no more than q2/2δ+1. We
write Hi for the header of the i-th chosen ciphertext query. If Hi = Hj, then
Di �= Dj , since the adversary is nonce-respecting.

Consider Hi �= Hj and Δ(i, j) := F ′(Hi)⊕F ′(Hj) ∈ {0, 1}δ. We get Ci
0 = Cj

0

if and only if N i⊕N j = Δ(i, j), i.e. with at most the probability 1/2δ. There are
q(q−1)/2 pairs (i, j) with 1 ≤ i < j ≤ q, so the probability for an input-collision
at level k = 0 is q(q − 1)/2δ+1. ��

The proofs for privacy and authenticity of CCFB+H are the same as their
counterparts in Section 4. We consider adversaries, who are either nonce-respec
ting or nonce-randomising.

Theorem 3 (Information-Theoretic Privacy of CCFB+H).
CCFB encryption using a random F is

qr + q2

2δ+1
-private.
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Theorem 4 (Information-Theoretic Authenticity of CCFB+H). CCFB
encryption using a random F is(

qr + q2

2δ+1
+

1
2τ

)
-authentic.

6 Using a Single Random Function f

For CCFB, we can instantiate the random function F : {0, 1}n → {0, 1}n by a
PRF – or by a block cipher EK under a secret key K. Thus, CCFB can obviously
be viewed as a block cipher mode of operation. But for CCFB+H, we need an
additional random function F ′ : {0, 1}∗ → {0, 1}δ, which is supposed to be
independent from F .

We propose to use a single variable-input-length random functionf :{0, 1}∗→
{0, 1}n, defining F and F ′ by

F (x) = f(x) for x ∈ {0, 1}n

F ′(y) = MSB|Mm|(f(0n||y)) for y ∈ {0, 1}∗

By the definition of CCFB and CCFB+H, the first τ bits of any input for
F represent a number between 1 and 2τ−1, i.e. are never zero. Thus, inputs
x and 0n||y for f are never the same,6 and F and F ′ behave exactly like two
independent random functions.

7 Instantiating f by OMAC

OMAC [5, 6], described in Figure 5,7 is a message authentication code under a
function EK : {0, 1}n → {0, 1}n. It

– can use any block cipher or PRF as the underlying primitive,
– uses a block cipher E only in encryption mode,
– uses a single block cipher (or PRF key) K,
– and is provably secure in the standard model, see Theorem 5 for OMAC’s

information-theoretical security as a variable-input-size PRF in a
concrete security setting.

6 In fact, we could replace 0n||y by 0τ ||y. The only reason why we propose the longer
0n-prefix is the improved efficiency for our OMAC based instantiation of f .

7 [6] describes two flavours of OMAC, OMAC1 and OMAC2. In this paper, we set
OMAC=OMAC1, but we could use OMAC2 just as well.

For the definition of u and “∗” in GF(2n) see [5, 6]. We stress that computing L∗u
and L ∗ u2 can be done very efficiently by shifting and conditional XORing.
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Algorithm: OMAC.
Init: L0 := EK(0); L1 := L0 ∗ u; L2 := (L0 ∗ u2); (∗ in GF(2n) ∗)
Input: X ∈ {0, 1}n.

1. parse X as X1, . . .Xm;
2. Z := 0n;
3. for i in 1 ≤ i ≤ m− 1: Y := Xi ⊕ Z;

Z := EK(Y );
4. if |Mm| = n then Y := Y ⊕ L1;

else Y := Y ⊕ L2;
Output: authentication tag EK(Y ).

Fig. 5. OMAC

Theorem 5 (Lemma 5.2 of [6]). Consider OMAC under a random permu-
tation EK : {0, 1}n → {0, 1}n. An adversary asking at most q′ queries, each at
most μ < 2n/4 blocks long, cannot distinguish OMAC from a random function
with an advantage exceeding

(5μ2 + 1)q′

2n
.

Thus, we propose to instantiate f by OMAC under a block cipher E (e.g.,
E=AES) and a secret block cipher key K. The performance figures are:

– Computing F ′(H) = OMACK(0n||H) can be done by calling the block cipher
EK only 
|H |/n� times. The first iteration of the loop in Figure 5 can easily
be optimised away, since it produces EK(0) = L0, which has been computed
before, in the initialisation phase.

– Each computation of a value F (Ci−1, i) or F (C′, m + d) boils down to a
single block cipher call.

⇒ Computing CCFB+H(H ,M) thus needs⌈
|H |
n

⌉
+
⌈
|M |
δ

+ 1
⌉

block cipher calls. (3)

8 A Comparison: EAX ↔ CCFB+H

In this section, we extrapolate the performance of CCFB+H from EAX’ perfor-
mance. Based on these results, one can compare the performance of CCFB+H
with other modes, such as CWC and GCM, and one can verify these findings by
benchmarking CCFB+H directly.

This has not been done in the current paper, which’s focus is on low-end
systems. As stressed in [9], CWC has not been developed for low-end devices.
CWC combines counter-mode encryption with a Carter-Wegman hash function
over GF(2127 − 1). Due to the heavy use of large-scale integer multiplications,
CWC actually appears to be very unattractive for low-end devices. Similarly to
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CWC, GCM combines counter-mode encryption with a universal hash function,
namely a polynomial hash over some binary field GF(2w). Efficient software
implementations would need large tables, i.e. more storage space than available
on usual low-end systems. It thus seems natural to consider EAX as the main
“competitor” for CCFB+H.

To the security architect, CCFB offers a trade-off between the size τ of the
authentication tag and the size δ of the message blocks. This has an obvious
impact on the performance, but also determines the security level. Table 1 high-
lights this. Apart from the bound on τ , what is the impact of replacing a term
Θ(r2/2n) (for EAX) by Θ(qr/2n−τ ) (for CCFB+H)?

Table 1. Asymptotical Security of EAX and CCFB+H

provable privacy provable authenticity limit for τ

EAX Θ
(

r2

2n

)
Θ
(
min
{

r2

2n , 1
2τ

})
τ ≤ n

CCFB+H Θ
(

qr
2n−τ

)
Θ
(
min
{

qr
2n−τ , 1

2τ

})
τ ≤ n − δ

r =
∑

mi: accumulated number of message blocks q: number of messages

The maximum message length for CCFB+H is (n− τ)(2τ − 3) bit, i.e. appx-
oximately 2τ blocks. Thus, if the average message size is large, CCFB+H can be
about as secure as EAX. On the other hand, CCFB+H has been designed with
low-end devices in mind. Typical applications for low-end devices mostly trans-
mit small messages. So let us consider a concrete example with small messages:

block cipher: E=AES, and thus n = 128,
tag size: τ = 32, and thus δ = 128− 32 = 96,
number of messages in the lifetime of a secret key: q ≤ 228

average message size: ≤ 16 blocks (16 ∗ δ = 1536bit) ⇒ r ≤ 232.

While EAX would provide better security than CCFB+H, we still get good
privacy and almost the authenticity we would expect from an ideal MAC with
32-bit authentication tags:

privacy (Thm. 3): qr+q2

2δ+1 ≈ 260/297 ≈ 2−37

authenticity (Thm. 4): qr+q2

2δ+1 + 1
2τ ≈ 2−37 + 2−32 ≈ 2−32

The above results apply in an information-theoretic setting. Since we propose
to use OMAC as a pseudorandom function, Theorem 5 comes into play. Note
that each header H and each message block Mi in the CCFB+H setting is, from
OMAC’s point of view, a message of its own right – OMAC thus authenticates
q′ = q+r messages. Theorem 5 also considers the length μ of the largest message
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(in blocks). By the specification of CCFB, we have μ ≤ 2τ−3. Even if we assume
μ ≈ 2τ , the advantage is bounded by

the pseudorandomness of OMAC (Thm. 5):
(5μ2 + 1)q′

2n
≤ 2−64.

This is negligible, compared to the 2−37 and 2−32 from above.
Finally, we also compare the performance of the concrete CCFB+H example

with the security of AES-based EAX. CCFB+H allows the precomputation of
a header checksum F ′(H) in advance, before knowing M . EAX offers a similar
feature. Thus, in Table 2, we consider authenticated encryption with and without
header precomputation. It turns out that

– The header-dependent work is the exactly same for EAX and CCFB+H:
Computing OMAC(H) by making 
|H |/128� AES calls.

– Apart from the header-dependent work, we see the following:
• For short messages (|M | ≤ 96), CCFB+H makes two AES calls, while

EAX makes three. E.e., CCFB+H is 50% faster than EAX.
• With |M | increasing, CCFB+H is at least as fast as EAX (97 ≤ |M | ≤

128), and at most 66.7% faster (128 ≤ |M | ≤ 192).
• In the long run, EAX makes about |M |/64 calls. CCFB+H with |M |/96

calls is 50% faster.

Table 2. Performance of AES-based EAX and CCFB+H in # of AES calls

full computation header has been preprocessed

EAX
⌈ |M |

128

⌉
+
⌈ |M |

128

⌉
+ 1 +
⌈ |H |

128

⌉ ⌈ |M |
128

⌉
+
⌈ |M |

128

⌉
+ 1

CCFB+H
⌈ |M |

96

⌉
+ 1 +
⌈ |H |

128

⌉ ⌈ |M |
96

⌉
+ 1

|M | = message length |H | = header length nonce-length ≤ 128 bit
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Appendix: Deferred Proof and Figures

Theorem 2 (Information-Theoretic Authenticity of CCFB)
CCFB encryption, using a random F , is(

qr

2δ+1
+

1
2τ

)
-authentic with respect to nonce-respecting adversaries and

(
q(r + q)

2δ+1
+

1
2τ

)
-authentic with respect to nonce-randomising adversaries.

Proof. We will show that the chance to succeed in forging a message without hav-
ing found an input-collision is at most 1/2τ . The claimed theorem then follows
from Lemma 1.

The adversary’s knowledge about the local authentication tags Ai
j can be

described by

q linear equations T i = Ai
1 ⊕

⊕
2≤j≤mi+1

Ai
j with 1 ≤ i ≤ q
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Algorithm: CCFB decryption.
Input: nonce N ∈ {0, 1}δ and C ∈ {0, 1}∗, τ + 1 ≤ |C| ≤ (2τ − 3)δ + τ ;
First pass:

1. parse C as (C1, . . . , Cm, T ) with
|C1| = · · · = |Cm−1| = δ, |Cm| ∈ {1, . . . , δ}, |T | = δ;

2. C0 := N ;
3. for 1 ≤ i ≤ m− 1: (tmp, Ai) := F (Ci−1, 〈i〉τ );

Mi := tmp⊕ Ci;
4. (tmp, Am) := F (Cm−1, 〈m〉τ );
5. if |Cm| = δ then d := 1; pad := ()(∗empty string∗);

else d := 2; pad := (1||0δ−|Cm|−1);
6. Mm := MSB|Cm|(tmp)⊕ Cm;
7. C′ := tmp⊕ (Mm||pad);
8. (dummy, Am+1) := F (C′, 〈m + d〉τ );

Second pass:
9. T ′ := A1 ⊕ · · · ⊕Am+1;

Output: If T = T ′

then output plaintext (M1, . . . , Mm) with
M1, . . . , Mm−1 ∈ {0, 1}δ, and Mm ∈ {0, 1}|Mm|

else output (none).

Fig. 6. CCFB decryption under F : {0, 1}δ × {0, 1}τ → {0, 1}δ × {0, 1}τ

over GF(2τ ). We stress that only the T i are known – the unknowns Ai
j (j ≥ 1)

are uniformly distributed independent random values from GF(2τ ) (since we
assumed no input-collision). Due to the statistical independence of the Ai

1, all q
linear equations are linearly independent.

A forgery (C0, C) with C = (C1, . . . , Cm−1, Cm, T ) succeeds if and only if C
is different from all the other ciphertexts Ci and the linear equation

T = A1 ⊕
⊕

2≤j≤m+1

Aj (4)

holds. We claim that Equation 4 is linearly independent from the q equations
above. I.e., we show that the sum of Equation 4 with any subset of equations
T i = . . . is the sum of some non-dissappearing unknowns Ai

j or Aj with j ≥ 1
and 1 ≤ i ≤ q.

If D0 �∈ {D1
0, . . . , D

q
0},8 the term A1 cannot dissappear. So assuming w.l.o.g.

D0 = D1
0, this is equivalent to C0 = C1

0 , from which A1
1 = A1 follows. By adding

T and T 1, we get

T 1 ⊕ T =
⊕

2≤j≤m1+1

A1
j ⊕
⊕

2≤j≤m+1

Aj .

8 The inputs Dj for F are defined similarly to the Di
j in Equation 1.
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M[2]M[1]start
N+2 N+m

stopM[n]

N C[0] C[1] C[2] C[m] C[m+1]
A[0] A[1] A[2] A[m] A[m+1]

N+1 N+m+1

plaintext: (M1, . . . Mm) ∈ {0, 1}δm, Mi �∈ {start, stop};
nonce: N ∈ {0, 1}τ ; ciphertext: ((C0, A0), . . . , (Cm+1, Am+1)) ∈ {0, 1}n(m+2)

Fig. 7. RPC encryption under a permutation

Any terms A1
j = Aj cancel out if Dj = Dk

j . We define the set

A∗ = {A1
j |2 ≤ j ≤ m1 + 1, D1

j �= Dj} ∪ {Aj |2 ≤ j ≤ m + 1, Dj �= D1
j }

of terms which don’t cancel out and rewrite T 1 ⊕ T as

T 1 ⊕ T =
⊕

A∈A∗
A.

Since C �= Ci, the set A∗ is not empty.9 For i > 1, each equation T i = . . . with
i > 1 added to T 1⊕T introduces a non-disappearing term Ai

1 to the sum. Thus,
equation 4 is linearly independent from the equations for the T i, as claimed.

Since Equation 4 is linearly independent from the q equations for the T i, the
sum T = A1⊕

⊕
2≤j≤m+1 Aj can take any value in T ∈ GF(2τ ), and the number

of solutions for each T is the same. All T ∈ GF(2τ ) are equally likely to be the
“correct” solution, which finally yields the claimed probability 1/2τ . ��

9 Technically, C �= Ci could mean T �= T i, m = mi, and Cj = Ci
j for 1 ≤ j ≤ m. But

this type of forgery would fail: A∗ = {} and thus T 1 ⊕ T = 0, contradicting T �= T i.
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Abstract. In [8], Paterson and Yau presented padding oracle attacks
against a committee draft version of a revision of the ISO CBC-mode
encryption standard [3]. Some of the attacks in [8] require knowledge
and manipulation of the initialisation vector (IV). The latest draft of the
revision of the standard [4] recommends the use of IVs that are secret and
random. This obviates most of the attacks of [8]. In this paper we consider
the security of CBC-mode encryption against padding oracle attacks in
this secret, random IV setting. We present new attacks showing that
several ISO padding methods are still weak in this situation.
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1 Introduction

Vaudenay [9] introduced the notion of padding oracle attacks on CBC-mode en-
cryption. His work showed that several uses of CBC-mode encryption in well-
known products and standards are potentially vulnerable to attack whenever the
attacker can submit ciphertexts for decryption and has access to a side-channel
whichtells himonly whetheror notthe correspondingplaintext iscorrectly padded.
Canvel et al. [7] applied and extended the ideas of [9] to show that a particular im-
plementation of SSL used to protect e-mail passwords could be attacked and the
passwords extracted. Further padding methods were examined in [6].

In [8], Paterson and Yau examined the security of the ISO standard for CBC-
mode encryption with respect to padding oracle attacks. The draft revision of the
standard [3] analyzed in [8] proposes the use of padding methods from ISO/IEC
9797-1 [1] and ISO/IEC 10118-1 [2]. Paterson and Yau showed that several of
these padding methods, when used with CBC-mode encryption, are vulnerable
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to padding oracle attacks1. The work of [8] highlights the dangers of “cutting-
and-pasting” methods from one set of standards into another.

Partly as a consequence of the work of [8], a later draft of the revised ISO
standard [4] omits all mention of padding methods. Additionally, it recommends
that “integrity-protected secret” and “randomly chosen statistically unique” IVs
be used. The motivation for using secret IVs given in [4] is “to prevent informa-
tion leakage”. The recommendation for random IVs is in-line with the formal
security analysis of [5] which shows (in a sense that can be made precise) that
CBC-mode is secure provided that the underlying block cipher is strong and that
the IV is random. We also note that [4] allows the use of multiple IVs (called
starting variables, or SVs in [4]) and interleaving of multiple cipher block chains;
this allows for parallelism in encryption. We expect that in most applications, a
single IV will be used, and this is the situation we focus on here.

The attack model in [8] assumes that the IV can be chosen by the attacker and
is submitted to the padding oracle along with the ciphertext. To be successful,
most of the attacks in [8] do in fact require the attacker to have knowledge of the
IV and the ability to manipulate it. For this reason, the attacks in [8] would not
apply to CBC-mode as defined in [4] if the padding methods of [1] and [2] were
used and if the new recommendations to use secret, random IVs were followed.
More specifically, the only attack in [8] that remains practicable is Attack 2
against padding method 3 of [2]. This attack on its own arguably has a small
impact on the confidentiality of data because it works only against the last one
or two blocks of a target ciphertext and recovers relatively few useful data bits.

Despite their omission from the draft ISO standard [4], padding methods are
needed in order to fully specify the CBC-mode of operation. It is not unreason-
able to assume that, in the absence of any other guidance, an implementer of
CBC-mode according to [4] might borrow techniques from other ISO standards,
as was indeed proposed in [3]. Here, we demonstrate that padding oracle attacks
can still be effective against CBC-mode encryption even when IVs are secret and
random. In particular, we show that several padding methods from [1, 2] are still
weak even in this situation.

1.1 Attack Models

Before giving details of our attacks, we clarify the attack models under which
these attacks will take place.

When IVs are secret and random, a variety of practical methods could be
used to ensure the IVs are available to both encrypting and decrypting parties.
For example, the IV could be encrypted using ECB-mode and prefixed to the
ciphertext. Alternatively, a value V could be prefixed to the ciphertext and the
IV generated by encrypting V using ECB mode. Or, as a third possibility, a pre-

1 In fact, [8] claims padding oracle attacks against the second edition of ISO/IEC
10116, though this edition of the standard makes no mention of padding methods.
Padding methods did not appear in draft revisions of the standard until the com-
mittee draft stage in the proposed 3rd edition of ISO/IEC 10116.
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agreed list of IVs could be used and an index sent with ciphertexts to indicate
which entry in the list was used as the IV. Because these approaches include
information determining IVs along with ciphertexts, they allow the adversary to
influence which IV is used by the padding oracle when decrypting, without the
adversary necessarily knowing the actual value of the IV. In particular, they allow
the adversary to force the oracle to re-use an old IV. We can model this kind of
attack by assuming that, when submitting a ciphertext to the padding oracle,
the attacker specifies an additional string I which in some way determines the
IV used by the padding oracle. The contents of I will depend on the particular
method used for establishing IVs: for example, in the case of encrypted IVs, I
will simply be the encrypted IV, while in the case of a pre-established list, I
would be an index in the list.

We expect that the above kind of approach for establishing secret, random
IVs is most likely to be used in practice. But it is also conceivable that a second
approach, in which no information at all about the IV is transmitted as part
of ciphertexts, might be used. For example, the communicating parties may be
able to maintain a synchronised counter and then obtain IVs by applying a
keyed pseudo-random function to the counter. We also want to model attacks in
this scenario, which presents a tougher attack environment to the adversary. We
can do this by assuming that the padding oracle simply selects a fresh, random
IV before every decryption and that no IV-related information is included in
ciphertexts.

Thus in this paper, we will consider two slightly different attack models. In
the first model, IVs are secret and random but are determined by additional in-
formation I available to the attacker and submitted to the oracle. In the second
model, IVs are secret and random and the attacker has no control over the IV used
by the padding oracle. Obviously, attacks in the second model are more powerful,
but attacks in the first model already capture many likely practical situations.

1.2 Our Results

In Section 3.2, we introduce a new padding oracle attack against CBC-mode
when used with padding method 3 of [1]. Our new attack applies for secret,
random IVs in the first attack model. The new attack uses a set of auxiliary
ciphertexts corresponding to plaintexts of different lengths as an aid to recovering
the plaintext corresponding to a target ciphertext block. The complexity of the
attack depends on the spread of lengths of the auxiliary ciphertexts; it can be
as low as n queries to the padding oracle, where n is the block size.

We have been able to adapt the attacks of [8] against CBC-mode when used
with padding method 3 of [2] to the secret and random IV setting without
significant penalties on complexity or generality. These attacks are applicable
in our second, tougher attack scenario. An attack applicable to any ciphertext
block is presented in Section 4.2. This attack first constructs a valid ciphertext
with the target block as the final block and then uses the attack of Section 4.3
to decrypt that block. The first phase requires, on average, roughly 2r−1 calls to
the padding oracle. Here r is a parameter associated with the padding method.
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The attack of Section 4.3 is applicable to the final block of any ciphertext and
is always efficient, requiring only O(n) oracle queries to recover all the plaintext
bits in the last block.

We note that our results do not contradict the results of [5], since the secu-
rity model of [5] does not cater for the kind of side-channel information that a
padding oracle provides to an attacker. We also note that all of our attacks are
independent of the particular block cipher used.

Our attacks can be further developed to handle the situation where multiple
IVs are in use. Again, we can obtain attacks against method 3 of [1] for multiple
secret, random IVs in the first attack model. We can also find attacks against
method 3 of [2] for multiple secret, random IVs in the second attack model.
Since the modifications to our existing attacks are quite straightforward, we do
not include the details in this paper. Nor have we analyzed the other padding
methods from [1, 2] in the secret and random IV setting. Padding method 1
in both standards does not de-pad uniquely and is only useful when plaintexts
have fixed or known lengths. We expect that padding oracle attacks may be
possible against this method. As was noted in [6, 8], padding method 2 in the
two standards seems to be largely immune to such a side-channel analysis and
indeed makes a good candidate for recommendation as a padding method in the
ISO standard for CBC-mode encryption.

2 Symbols and Notation

We largely use the same notation as in [8], with only one major difference. In [8],
the first block of the ciphertext C0 submitted to the padding oracle was taken
to be the IV. Here, the attacker no longer submits the IV (since he does not
know it), but he may or may not submit additional information I, depending on
whether the attack is in the first or second attack model. Therefore in our new
notation, the first block of the ciphertext will be the first encrypted block C1,
and, in making padding oracle queries, we will prepend additional information
I to ciphertexts whenever appropriate. The context will make clear when this is
being done.

For a detailed description of CBC-mode encryption, see [8–Section 2.2]. We
summarise our other frequently used notation here for ease of reference.

C : ciphertext output after CBC-mode encryption; target ciphertext the at-
tacker is trying to decrypt.

C ′ : ciphertext to be submitted to the padding oracle during an attack.
dK(Y ) : decryption of ciphertext block Y under key K.
D : unpadded data string to be CBC-mode encrypted.
eK(X) : encryption of plaintext block X under key K.
I : information determining the IV in our first attack model.
IV : the initialisation vector used in CBC-mode.
LD : the length (in bits) of the data string D.
n : the block size (in bits) of the block cipher.
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P : the result of applying a given padding method to D.
q : the number of blocks in data string P after padding.
VALID and INVALID: padding oracle responses to, respectively, correct and in-

correct padding after receipt and decryption of ciphertext.
X||Y : the result of concatenation of strings X and Y .
X ⊕ Y : the result of exclusive-or (XOR) of strings X and Y .
(X)2 : the binary representation of the value X.
Xj : the jth block of the plaintext or ciphertext X (1 ≤ j ≤ q).
Xj,k : the kth bit of the plaintext or ciphertext block Xj , 0 ≤ k < n.

3 Analysis of Padding Method 3 of ISO/IEC 9797-1

3.1 Review of Padding Method and Previous Attack

We reproduce the original text of the padding method from [1]:

“The data string D to be input to the [. . . ] algorithm shall be right-
padded with as few (possibly none) ‘0’ bits as necessary to obtain a
data string whose length (in bits) is a positive integer multiple of n. The
resulting string shall then be left-padded with a block L. The block L
consists of the binary representation of the length (in bits) LD of the
unpadded data string D, left-padded with as few (possibly none) ‘0’ bits
as necessary to obtain an n-bit block. The right-most bit of the block
L corresponds to the least significant bit of the binary representation of
LD.”

The attack in [8–Section 3.4] decrypts, one block at a time, arbitrary cipher-
texts C1||C2|| . . . ||Cq that are padded using the above method. The attack makes
repeated use of a padding oracle and has two phases.

The general case of the first phase applies to ciphertexts consisting of three
or more blocks and was presented as Algorithm 9797-1-m3-get-LD-general in
[8]. The algorithm, when given a q-block valid ciphertext as input, finds LD by
manipulating the padding bits. The procedure requires the re-use of old IVs.
Since we will use it in our new attack, we reproduce this algorithm here as
Algorithm 1., with notation modified to reflect the use of additional information
I to determine IVs. In the algorithm (which, in common with all the algorithms
presented here, can be found in the Appendix), I denotes the IV-determining
information that accompanied the target ciphertext.

The special case of the first phase applies to two-block ciphertexts and was
presented as Algorithm 9797-1-m3-get-LD-special in [8]. This algorithm does
require the ability to directly manipulate bits in the IV and so does not apply
in either of our attack models.

The second phase of the attack on Method 3 of ISO/IEC 9797-1 in [8–Section
3.4] is the actual decryption. Algorithm 9797-1-m3-decrypt in [8] returns the
rightmost n−1 bits of a plaintext block but in so doing makes repeated updates
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to the IV. It is therefore unusable in our attack models. Algorithm 9797-1-m3-
decrypt-last-bit in [8] returns the leftmost bit of a plaintext block. It is also
unusable, since it requires a customised setting of the IV and a successful run of
Algorithm 9797-1-m3-decrypt.

3.2 An Attack with Secret and Random IVs

We require some further mild assumptions in order to obtain an attack against
padding method 3 of [1] with secret and random IVs. The attack is in our first
attack model. We assume that, in addition to having a target ciphertext C
which he wishes to decrypt, the attacker has also gathered a set of m auxiliary
ciphertexts labelled C1, C2, . . . , Cm, and associated IV-determining information
I1, . . . , Im. We write qj for the number of blocks in ciphertext Cj and require that
qj ≥ 3 for each j. The attacker can immediately use Algorithm 1. and the padding
oracle to find the length Lj of each ciphertext Cj . We write Fj = Lj mod n. We
require that the Fj be distinct and that no Fj is equal to zero. Without loss of
generality, we can then write 1 ≤ F1 < F2 < . . . < Fm ≤ n − 1. We also set
Fm+1 = n.

Notice that auxiliary ciphertexts with the required properties can easily be
selected from a larger pool of ciphertexts. The auxiliary ciphertexts are not
themselves decrypted in the course of the attack (though they can individually
be used as target ciphertexts if their decryption is desired).

Our attack is presented in Algorithm 2. and described in words below.
The attack attempts to recover the plaintext block Pk matching the block Ck of

the q-block ciphertext C. In fact, we are only able to extract the rightmost n−F1

bits of Pk for each k ≥ 2. The attack attempts to construct, for decreasing values
of j, a valid qj-block ciphertext whose last block is the target block Ck and whose
first block is Cj

1 . Because of the padding rule, such a ciphertext must correspond
to a plaintext in which the last block P ′

qj
consists entirely of ‘0’s in the rightmost

n−Fj positions. By carefully controlling the values in the penultimate ciphertext
block, we can ensure that only a relatively small number of trials is needed in order
to achieve this for each successive value of j. Eventually, when j = 1, we have a
ciphertext with last block Ck where the matching plaintext block P ′

q1
has ‘0’s in

the rightmost n−F1 positions. From this information and Ck−1 it is easy to recover
the rightmost n− F1 positions of the original plaintext block Pk.

We now explain in more detail the operation of the attack. We begin by
considering the rightmost n−Fm positions. Consider submitting to the padding
oracle a ciphertext of the form:

Im, Cm
1 || 00 . . . 0|| . . . ||00 . . . 0︸ ︷︷ ︸

qm−3 blocks

||S||Ck

where S is a block taking on a random value in the rightmost n−Fm positions.
Because Im determines the original IV used in obtaining Cm, block Cm

1 indicates
that n − Fm ‘0’ padding bits should be found in the last plaintext block, and
hence the oracle will return VALID with a probability of 2Fm−n. An INVALID
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response indicates that another value of S should be tested. In the algorithm we
simply use an increasing (n−Fm)-bit counter for this purpose. After an average
of around 2n−Fm−1 and at most 2n−Fm trials, we will obtain a VALID response.
In this case, we learn that S ⊕ dK(Ck) is equal to ‘0’ in the rightmost n − Fm

positions.
Notice that from this information and knowledge of Ck−1, we could imme-

diately recover the rightmost n− Fm bits of Pk. However, we now preserve the
successful value of S by setting R = S, and proceed to examine the rightmost
n − Fm−1 bits. Now consider submitting to the padding oracle a ciphertext of
the form:

Im−1, Cm−1
1 || 00 . . . 0|| . . . ||00 . . . 0︸ ︷︷ ︸

qm−1−3 blocks

||S||Ck

where now S is a block taking on a random (Fm − Fm−1)-bit value in positions
Fm−1, Fm−1 +1, . . . , Fm− 1, and equalling R in the rightmost n−Fm positions.
Now block Cm−1

1 indicates that n − Fm−1 ‘0’ padding bits should be found
in the last plaintext block. By using R to set the rightmost n − Fm bits of
S, we have already arranged ‘0’ bits in the rightmost n − Fm positions of the
last plaintext block. So the oracle returns a VALID response with probability
2−(Fm−Fm−1). Again, we use a counter to test the 2Fm−Fm−1 values in positions
Fm−1, Fm−1 +1, . . . , Fm−1. After an average of about 2Fm−Fm−1−1 and at most
2Fm−Fm−1 trials, we will obtain a VALID response. In this case, we learn that
S ⊕ dK(Ck) is equal to ‘0’ in the rightmost n− Fm−1 positions.

It is now straightforward to see how Algorithm 2. proceeds in this manner to
eventually construct a valid ciphertext of the form:

I1, C1
1 || 00 . . . 0|| . . . ||00 . . . 0︸ ︷︷ ︸

q1−3 blocks

||R||Ck

so that the corresponding last plaintext block contains ‘0’ padding bits in the
rightmost n− F1 positions. Then a simple calculation shows that the rightmost
n− F1 bits of Pk are equal to the rightmost n− F1 bits of the block R⊕ Ck−1.

3.3 Complexity and Impact

It takes an average of just over 2Fj+1−Fj−1 oracle queries to obtain a VALID
response and recover the bits at positions Fj to Fj+1 − 1 of Pk. So the av-
erage number of oracle queries needed to recover n − F1 bits of plaintext is∑m

j=1 2Fj+1−Fj−1. The worst-case complexity is twice this. Notice that when
F1 = 1 and Fj+1 − Fj = 1 for each j, the average number of oracle queries
needed to decrypt all but the leftmost bit of an n-bit block is just n− 1. In this
case, at most two oracle queries are made for each j. In fact, since the outcome
of the second oracle query is determined by the first, it is trivial to modify the
attack so that n− 1 queries also represents the worst-case performance.

As an example, suppose the block size n = 64 and the data is byte-oriented.
Suppose we can obtain 7 auxiliary ciphertexts whose lengths modulo 64 are 8,
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16, 24, . . . , 56. Then we have m = 7 and the average number of oracle queries
needed to obtain 56 out of 64 plaintext bits is roughly 900. If the plaintext has
some sort of predictability (e.g. ASCII characters making up an English text, or
certain positions in a message within some known protocol), then the remaining
byte might be easily guessed.

3.4 Limitations

Unfortunately, we have not succeeded in finding a method to extract the leftmost
F1 ≥ 1 bits of the plaintext block Pk. The underlying reason is that, when the
original data fits exactly within blocks, the default padding rule is to add no
padding bits at all. This makes it difficult to set up a padding oracle test giving
plaintext information.

Algorithm 1. can only find the contents of the length block for ciphertexts
with at least 3 blocks. Whilst we are usually more interested in plaintext bits
than length information, it would be convenient if Algorithm 2. could be applied
to block C1 of a two-block target ciphertext to extract the length information
LD. However, this would require knowledge of the IV (since block Ck−1 is used
at the last stage of our attack to recover the original plaintext bits). A lower
bound on this length can be found by running Algorithm 2. on target block C2

and finding the position of the rightmost one in P2.

3.5 Comparison

The secret and random conditions on IVs have forced us to develop a completely
new attack strategy against padding method 3 of [1]. The corresponding attack in
[8] makes near-optimal use of the padding oracle and extracts all plaintext bits.
To be efficient, our new attack requires the collection of auxiliary ciphertexts
with a good spread of data lengths. There might be scenarios where this is
unrealistic. Our new attack can never extract the leftmost data bits in each
block. In the best case, it can recover all but the leftmost bit of plaintext using
an optimal number of oracle queries (if we ignore the cost of finding the lengths
of the auxiliary ciphertexts). Our attack cannot be extended to yield efficient
attacks in the second attack scenario in which the adversary has no information
about IVs at all. The reason is that the length information is placed in the first
plaintext block – as a result, a random setting of the IV is almost certain to
produce an INVALID response from the padding oracle.

In summary, in comparison to [8], the secret IV restriction has succeeded in
increasing the complexity and decreasing the effectiveness of an attack. However,
the attack is still feasible in many circumstances.

4 Analysis of Padding Method 3 of ISO/IEC 10118-1

4.1 Review of Padding Method and Previous Attacks

We reproduce below the original description of the padding method from [2], ex-
cept that here, and throughout, we use n in place of L1 to denote the block size:
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“This padding method requires the selection of a parameter r (where
r ≤ n), e.g. r = 64, and a method of encoding the bit length of the data
D, i.e. LD as a bit string of length r. The choice for r will limit the
length of D, in that LD < 2r.
“The data D [. . . ] is padded using the following procedure.
1. D is concatenated with a single ‘1’ bit.
2. The result of the previous step is concatenated with between zero

and n − 1 ‘0’ bits, such that the length of the resultant string is
congruent to n − r modulo n. The result will be a bit string whose
length will be r bits short of an integer multiple of n bits (in the
case r = n, the result will be a bit string whose length is an exact
multiple of n bits).

3. Append an r-bit encoding of LD using the selected encoding method,
yielding the padded version of D.”

No encoding method (for LD) is specified in the standard. We assume that
base 2 encoding is used. Our attacks here work no matter which encoding method
is used, though the attacker needs to know this method.

Using this padding method, the padding bits for data string D are appended
in one of two ways:

Same-block Here (LD mod n) ≤ (n − r − 1). The last block of D has enough
space after the last data bit to contain at least a single ‘1’ bit and the r bits
encoding LD. The number of padding bits (including the length information)
is between r + 1 and n− 1.

Cross-block Here (LD mod n) ≥ (n − r). The last block of D does not have
enough space to contain a ‘1’ bit and the r bits encoding LD. The number
of bits padded is between n and n + r and the padding either fits exactly
into an extra block or extends over two blocks. Note that this will always be
the case when r = n or r = n− 1.

In [8], the authors presented two inter-dependent attacks against this padding
method. The first attack creates a valid ciphertext with the target ciphertext
block as the last block, while the second attack decrypts the last block of any
ciphertext.

In more detail, Attack 1 of [8] (named “directed IV search”) takes a ciphertext
block Ck as input, and outputs a valid ciphertext of the form IV ′||Ck. It operates
by searching for an IV setting that produces a valid ciphertext. This ciphertext
is then fed into Attack 2 for decryption. The need to vary the IV in a controlled
manner means that the attack does not work when IVs are secret.

Attack 2 of [8] (named “attacking the last block(s)”) takes as input a whole
ciphertext and operates in two phases. In the first phase, it finds LD; in some
cases (including those resulting from Attack 1 of [8]) this involves changing bits
in the IV. So this phase does not work in general for secret IVs. In the second
phase plaintext bits are extracted. In the case of a same-block padded ciphertext,
this second phase does not require any control over the IV. So it will continue to
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function with only minor modifications in the new setting. In the case of a cross-
block padded ciphertext, the second phase can be used to speed up Attack 1 of
[8]. This will fail with secret IVs, since Attack 1 of [8] requires their controlled
modification.

Despite the failure of Attacks 1 and 2 of [8], a similar strategy can be followed
and the original attacks can be modified to work in the tougher of our two attack
scenarios. Analogues of Attacks 1 and 2 of [8] are presented in Sections 4.2 and 4.3.

4.2 Attacking an Arbitrary Ciphertext Block

The attack we present in this section attempts to decrypt an arbitrary block
Ck of a ciphertext C1||C2|| . . . ||Cq. In fact, our attacks only work for k ≥ 2.
It proceeds in two phases. In the first phase, a valid ciphertext is constructed
having Ck as the final block. In the second phase, the attack of Section 4.3 is
used to decrypt that final block. From this, Pk is easily found. Note that if Cq is
the target block, then one should proceed directly to the attack of Section 4.3.

Phase 1: Constructing a Valid Ciphertext. In this phase, we construct
a valid three-block or four-block ciphertext having target block Ck as the last
block. We aim for ciphertexts of these lengths because they simplify the second
phase of the attack: we will see in Section 4.3 that ciphertexts containing q ≥ 3
blocks are the easiest ones to deal with.

This phase splits into two cases, dependent on the value of r.
In the first case, we have r < n. The algorithm for this case is given in

Algorithm 3. and is next described in words. The algorithm essentially submits
three-block ciphertexts of the form:

00 . . . 0︸ ︷︷ ︸
n

||R2||Ck

to the padding oracle, for various values of R2 chosen in such a way that at least
one choice is guaranteed to produce a valid ciphertext. Our algorithm works no
matter what IVs are used by the padding oracle. Note that we suppress any
information I in submissions to the padding oracle here, and throughout this
section, because we are operating in the second attack model.

In more detail, a counter i is used to determine the rightmost r + 1 bits of
R2, while the leftmost n − r − 1 bits are set to ‘0’. This effectively means that
ciphertexts with all possible values of the length field in plaintext block P ′

3 are
submitted to the oracle as i runs between 0 and 2r − 1, the first half of the
search space. At least one choice of i in this range is guaranteed to result in a
VALID response from the oracle unless Ck and the selection of R2 mean that the
leftmost n− r bits of P ′

3 are all ‘0’. If this last case occurs, then considering all i
between 2r and 2r+1− 1 ensures that one of the leftmost n− r bits of P ′

3 is a ‘1’
and that at least one choice of i results in a VALID response. We will evaluate
the average and worst-case complexity of this case of Phase 1 below.
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In the second case, where r = n, a similar attack applies. We now submit
four-block ciphertexts of the form:

00 . . . 0︸ ︷︷ ︸
n

||R1||R2||Ck

to the padding oracle, where we try all possible settings of R2 and the rightmost
bit of R1. We are then guaranteed to encounter a valid ciphertext after a maxi-
mum of 2n+1 oracle calls. The algorithm for this case is given in Algorithm 4.;
we analyse its complexity in detail below.

Phase 2: Decrypting Ck. Once we have a valid three or four-block ciphertext,
the attack of Section 4.3 can be applied to obtain the plaintext block P ′

3 (or P ′
4 in

the four-block case) corresponding to the final block of C ′. From P ′
3, the original

plaintext block Pk can be recovered using the relation Pk = P ′
3 ⊕ R2 ⊕ Ck−1.

(A similar procedure applies for the four-block case.) As we shall see below, the
attack of Section 4.3 is always efficient when attacking the last block of a three-
block (or four-block) ciphertext. So this approach allows efficient extraction of
Pk.

A little more detail is appropriate at this stage. We focus on the three-
block case. The first phase of the attack in Section 4.3 finds the length LD

of the data encrypted in C ′. If LD > 2n, then the data is same-block padded,
while if LD ≤ 2n it is cross-block padded. If it happens that the data is cross-
block padded, then all the bits in P ′

3 (or P ′
4 in the four-block case) are already

determined and are of the form:

00 . . . 0︸ ︷︷ ︸
n−r

(LD)2︸ ︷︷ ︸
r

or 10 . . . 0︸ ︷︷ ︸
n−r

(LD)2︸ ︷︷ ︸
r

.

So in this case no actual decryption step is needed to recover Pk. Notice that this
case will always apply when r = n or r = n − 1. When the data is same-block
padded, we must proceed to the second phase of the attack in Section 4.3. In
the three-block case, this phase will efficiently recover the entire plaintext block
P ′

3 consisting of (in general) data bits, padding bits and length information.
From P ′

3, we can recover Pk using the relation Pk = P ′
3 ⊕R2 ⊕ Ck−1. A similar

procedure applies for the four-block case.

Complexity. We begin by analyzing Phase 1 of the attack in the case where
r < n. The analysis is complicated by the fact that Algorithm 3. might out-
put a valid three-block ciphertext C ′ for which the corresponding plaintext
P ′ = P ′

1||P ′
2||P ′

3 is cross-block padded. This will have the effect of slightly low-
ering the average-case complexity when compared to the corresponding attack
in [8]. Such a cross-block padded plaintext requires that blocks P ′

2||P ′
3 take the

form:
P ′

2,0P
′
2,1 . . . P ′

2,LD−n−1 10 . . . 0︸ ︷︷ ︸
2n−LD

|| 00 . . . 0︸ ︷︷ ︸
n−r

(LD)2︸ ︷︷ ︸
r
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where each P ′
2,i can be either a ‘0’ or ‘1’ bit and (2n − r) ≤ LD ≤ (2n − 1).

There are r n-bit patterns (corresponding to the r possible values of LD) for
P ′

3 that have the correct form. So the probability that Phase 1 produces cross-
block padding is at most r2r−n as we vary the rightmost r bits of R2 in Al-
gorithm 3.. Of course, such cross-block padding may never occur during the
execution of Algorithm 3.: given that R1 and the decryption key K are fixed,
there may be no choice of R2 that produces the required bit pattern in P ′

2 =
dK(R2)⊕R1.

In any case, we see that there is a probability of at least 1− 2r−n that either
there is a ‘1’ somewhere in the leftmost n − r bits of P ′

3, or we obtain a cross-
block padded ciphertext. In these cases, Algorithm 3. takes on average 2r−1

oracle calls. On the other hand, there is a probability of at most 2r−n that the
leftmost n− r bits of P ′

3 are all ‘0’ and Algorithm 3. tries all 2r possible settings
for the rightmost bits of P ′

3 without a VALID response. Algorithm 3. will then
take on average a further 2r−1 oracle calls before obtaining a VALID response. A
simple calculation now shows that the average number of oracle calls needed by
Algorithm 3. is at most 2r−1 + 22r−n, while in the worst-case it is 2r+1. When
r is small relative to n, the average-case complexity is dominated by the term
2r−1.

Phase 1 of the attack in the case r = n uses Algorithm 4.. This algorithm
uses on average 2n oracle calls to obtain a VALID response and 2n+1 in the worst
case.

Phase 2 uses the attack in Section 4.3 for the same-block padded case, which
has a complexity of O(n) oracle calls. So Phase 2 does not contribute significantly
to the overall complexity required to decrypt a single block (unless r is very
small).

Impact. This attack applies to any ciphertext block Ck of a ciphertext
C1||C2|| . . . ||Cq, except for the first block C1. It is not possible to decrypt C1

because of the use of the relation Pk = P ′
3⊕Ck−1⊕R2 at the end of the attack:

this would necessitate an XOR with the secret IV. The attack recovers all n bits
within the block and does so many orders faster than exhaustive search for many
choices or r. When r = n our attack is still better than exhaustive key search
for block ciphers whose key size is greater than the block length. We restate the
observation from [8] that the seemingly innocuous parameter r has unexpected
implications for security.

Comparison. This attack is an adaptation of Attack 1 in [8] to the second of
our attack models, where IVs are secret, random and completely hidden from
the adversary. These extra restrictions do not seem to be a major hindrance
to the effectiveness of the attack. Specifically, the complexity of the attack has
remained practically the same as the corresponding attack in [8], and, except
for the first ciphertext block, the impact remains unchanged. The attack uses
three-block or four-block ciphertexts instead of two-block ones when r < n; this
is not expected to be of any practical significance.
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4.3 Attacking the Last Block(s)

The attack we present in this section attempts to decrypt the last block Cq of
a ciphertext C1||C2|| . . . ||Cq. It is an adaptation of Attack 2 in Section 4.3 of
[8] to the secret and random IV setting, and, like that attack, proceeds in two
phases. Phase 1 determines the length LD of the ciphertext, while Phase 2 will
recover plaintext bits in the mixed block containing both padding and data bits.
(If there is such a block, then it is unique.) Recall that, as well as being directly
applicable to the last block Cq, our attack can also be used in conjunction with
the attack in Section 4.2 to decrypt arbitrary ciphertext blocks.

Phase 1: Finding LD. This phase of our attack is derived from the correspond-
ing phase in [8]. The case q = 2 requires special treatment and our methods fail
completely when q = 1. We first examine the general case q ≥ 3.

For ease of presentation we take r ≤ n − 2, but Algorithm 5. handles all
values of r. Here, in the same-block padded case, the last plaintext block Pq has
the following format:

[DATA]︸ ︷︷ ︸
t

10 . . . 0︸ ︷︷ ︸
p

(LD)2︸ ︷︷ ︸
r

where t+ p+ r = n and p ≥ 1. In the cross-block padded case, the above format
spans the last two blocks Pq−1 and Pq and we put t + p + r = 2n. We note that
the attacker does not, at first, know which of the cases he is faced with.

Given our q-block ciphertext, the rightmost position at which a data bit could
ever reside is at Pq,n−r−2. Consider then submitting to the padding oracle the
ciphertext:

C1||C2|| . . . ||Cq−1 ⊕ 00 . . . 0︸ ︷︷ ︸
n−r−2

1 00 . . . 0︸ ︷︷ ︸
r+1

||Cq.

The oracle will return either:

– VALID, meaning the padding has not been disturbed so the bit flipped in P ′
q

by modifying Cq−1 is a data bit. Since this bit is at the rightmost possible
data bit position, we can deduce that the data length LD equals (q − 1)n +
n− r − 1 = qn− r − 1.

– or INVALID, meaning a padding bit has been flipped so the padding is no
longer valid. Therefore the padding boundary is somewhere to the left of this
bit.

We can generalise the above observation about Pq,n−r−2 to produce Algo-
rithm 5., a binary search algorithm to find LD. In this algorithm, we initialise
two pointers l and u at the extremities of the possible padding range and modify
the ciphertext so as to invert the plaintext bit that lies in the middle position
h := �(l + u)/2� of the range. We then submit the ciphertext to the oracle. A
VALID response means the start of the padding is to the right of this test bit so
we set the lower pointer l to the position h + 1, whereas INVALID indicates it is
to the left and we set the upper pointer u to h. We must then reset the test bit
before proceeding to the next test. This process is repeated until the upper and
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lower pointers coincide, at which point they indicate the rightmost data bit. It
is then easy to determine LD. Clearly, the algorithm makes roughly log2 n calls
to the padding oracle and so is efficient.

This completes our discussion of the general case where q ≥ 3. Next we focus
on the case q = 2. This case requires special treatment because setting up a
binary search as above requires the ability to modifiy plaintext bits in the whole
range of padding positions, which in this case includes those in the rightmost
r positions of the plaintext block P1. This in turns necessitates the ability to
modify bits in the corresponding positions in the IV, which is not possible in the
setting of secret and random IVs.

Our solution, presented in Algorithm 6., is to perform a binary search over
the restricted range of those padding positions in the second (and last) plaintext
block P2. This is done by initializing the lower and upper pointers to n and
2n + r − 1 respectively. If the search finishes pointing to any position between
P2,1 and P2,n−r−1 then this indicates the actual leftmost padding position from
which LD can be determined. On the other hand, if the search ends pointing
at P2,0, then we can deduce that the bit at that position is a padding bit and
hence the boundary is somewhere to the left of that position. From this we can
deduce that the plaintext block P2 consists only of padding bits and encoded
length information, and that Ld ≤ n. We could go further and deduce most of
the contents of block P2, but these bits are not usually of much interest to the
attacker. In this case, we cannot continue with the attack.

We note that this q = 2 version of the length-finding algorithm is never
invoked by the attack in Section 4.2 (unless C2 is the last block and happens to
be the initial target).

Finally we consider the case q = 1. Here we are not able to find LD by
performing any kind of search for the data/padding boundary since this would
require manipulating the IV. Thus our methods fail in this case.

Phase 2: Decrypting. We assume that q ≥ 2 and that LD has been success-
fully obtained from Phase 1. This will always be the case for q ≥ 3 and often
the case for q = 2. Same-block and cross-block padded messages are treated
differently; recall that knowledge of LD indicates with which case the attacker
is faced.

Decrypting: Same-block Recall the structure of the last plaintext block Pq: t
unknown data bits, followed by p padding bits in the form 10 . . . 0 and finally r
bits encoding the data length LD. The only bits remaining to be found are the
t data bits. We can assume that t ≥ 1 and recover these as follows. Consider
submitting to the oracle the ciphertext C ′ = R||Cq where:

R = Cq−1 ⊕ 00 . . . 0︸ ︷︷ ︸
n−r

(LD)2︸ ︷︷ ︸
r

⊕ 00 . . . 0︸ ︷︷ ︸
t

10 . . . 0︸ ︷︷ ︸
p

(n + t− 1)2︸ ︷︷ ︸
r

.

This ciphertext is constructed in such a way that, after decryption to obtain
plaintext P ′

1||P ′
2, the length block in P ′

2 encodes the length n + t− 1, while the

.
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p padding bits are modified to be all ‘0’s. Moreover, data bits are copied intact
from Pq to P ′

2, so that Pq,i = P ′
2,i for 0 ≤ i < t. From the construction of C ′, we

see that the oracle will output VALID if and only if P ′
2,t−1 = 1. Since we have

Pq,t−1 = P ′
2,t−1, we can obtain the last data bit of block Pq.

This idea can be extended to recover all t data bits in Pq in a similar manner:
we reduce the length field in P ′

2 one step at a time whilst fixing the data in all
recovered bit positions to be ‘0’ so that they become part of a valid padding. A
single bit of P ′

2 and hence of Pq is revealed at each iteration, until all the data
bits in Pq are recovered. This procedure is given in detail in Algorithm 7.. Note
that the algorithm makes use of the function Ω̄ defined by:

Ω̄(C) =

{
1 if the padding oracle returns VALID for input C,

0 if the padding oracle returns INVALID for input C.

Note that Ω̄ is the complement of the function Ω in [8].

Decrypting: Cross-block For cross-block padded plaintexts with q ≥ 3blocks,
Pq is determined completely by LD and the padding. However, the padding often
extends into the penultimate plaintext block Pq−1 and we can exploit this fact
when decrypting block Cq−1.

Suppose t = LD mod n and t �= 0. Then u = n− t bits of padding of the form
10 . . . 0︸ ︷︷ ︸

u

are present in Pq−1. We show how to decrypt Cq−1 using the attack in

Section 4.2, but with a speed-up factor of 2u−1. Consider ciphertexts of the form
C ′ = 00 . . . 0||R2||Cq−1 where:

R2 = Cq−2 ⊕ 00 . . . 0︸ ︷︷ ︸
t

10 . . . 0︸ ︷︷ ︸
u

⊕ 00 . . . 0︸ ︷︷ ︸
n−r

(3n− r − 1)2︸ ︷︷ ︸
r

.

Upon decryption, this ciphertext will produce a plaintext block P ′
3 of the form:

P ′
3,0P

′
3,1 . . . P ′

3,t−1y0y1 . . . yu−1

where y0y1 . . . yu−1 are the u least significant bits of the binary encoding of the
length field 3n− r− 1. Now it is straightforward to see that running through all
2r−u+1 settings of the r − u + 1 bits immediately to the left of the rightmost u
bits (by varying the relevant bits of R2) will ensure that at least one valid three-
block ciphertext C ′ is obtained. Naturally, after obtaining such a valid C ′, we
can apply the attack of this section again, now using C ′ as the input ciphertext.
Eventually, that attack will output a candidate P ′

3 for the decryption of block
Cq−1 in ciphertext C ′; from this we can deduce the decryption Pq−1 of Cq−1 in
the original ciphertext C using the relation Pq−1 = P ′

3 ⊕R2 ⊕ Cq−2.
This strategy takes on average about 2r−u oracle calls which is roughly a

fraction 2−(u−1) of the number of oracle calls needed on average for the corre-
sponding attack in Algorithm 3. without the knowledge of the u padding bits.

Unfortunately this strategy does not work for two-block cross-block padded
ciphertexts in our attack model, because the very last step would need to use
IV in place of Cq−2.

.



314 A.K.L. Yau, K.G. Paterson, and C.J. Mitchell

Complexity. For q ≥ 3, Phase 1 of the attack takes roughly log2 n oracle calls
to find the data length LD. For same-block padded plaintexts, Phase 2 then
takes one call per bit for decrypting. So to recover the t data bits in the last
block, t + log2 n oracle calls are required. For cross-block padded plaintexts, the
block Pq is completely determined by LD. Then Phase 2 needs on average around
2r−u oracle calls to recover the whole of the penultimate plaintext block Pq−1.
Here u is the number of known padding bits in Pq−1 and we have ignored the
comparatively small cost of running the length-finding and last-block decryption
algorithms of this section.

For two-block ciphertexts, Phase 1 will take on average log2(n − r) oracle
calls to find either the actual value of LD or to find that LD ≤ n. In the former
case, the complexity of Phase 2 is exactly as above. In the latter case, the data
is cross-block padded but we are not able to recover the penultimate plaintext
block. Phase 1 of the attack is not successful for single-block ciphertexts and no
data bits can be extracted using our attack in this case.

It is important to note that, even though the two attacks presented here and
in Section 4.2 are inter-dependent, there is no possibility of the attack entering
an infinite loop. This is not difficult to show.

Impact. The attack is highly efficient (in terms of oracle access) at extracting
plaintext bits in the last plaintext block Pq. A maximum of n − r − 1 bits of
data can be recovered in this way and the attack is therefore significant for short
messages, especially in combination with a small r. One might argue that r = n
is a natural choice for the implementor. In this case, the padding is always cross-
block and the attacker must resort to the speeded-up version of the attack in
Section 4.2.

Comparison. One impact of assuming that IVs are secret and random on the
attack in this section is that Phase 1 of the attack is prevented from determining
the exact data length of single-block ciphertexts, and two-block ones when the
plaintext is cross-block padded. This, in turn, stops us from extracting any data
bits in these cases. This is in contrast to the corresponding cases in [8], where
the ability to manipulate the IV can be used to advantage.

The complexity of the two phases remains unchanged when compared to
the corresponding attack in [8] (log2 n oracle calls to find LD and one oracle
call per data bit extracted for same-block padding). Short ciphertexts, typically
two or three blocks long, are used throughout, so there is little or no message
expansion.

5 Conclusions

We have shown that the use of IVs that are secret and random does not prevent
padding oracle attacks on CBC-mode encryption. We have shown this to be the
case in the context of two padding methods previously analyzed in [8]. The use of
secret, random IVs required us to develop new ideas and to extend the analysis
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of [8]. The new attacks are, at best, of roughly equal complexity to those of
[8] and the assumptions we have made to obtain attacks seem reasonable. The
attacks recover most, if not all, plaintext bits many orders of magnitude faster
than exhaustive key search.

The 2004 FCD text for the 3rd edition of ISO/IEC 10116 [4], which supersedes
[3], contains new text regarding padding methods in Clause 5 (Requirements).
It now reads

. . . Padding techniques. . . are not within the scope of this International
Standard, and throughout this standard it is assumed that any padding,
as necessary, has already been applied.

This effectively off-loads the responsibility of choosing a padding method to the
implementor of this standard (if it is published with the text as it stands). In our
view, not specifying a padding method at all has the potential to be even more
dangerous than specifying a method that is known to be weak against certain at-
tack types. After all, there is no guarantee that an implementor will not choose
a method that falls to some even more realistic form of attack. Methods that ap-
pear to resist padding oracle attacks have been analysed [6]. For example, padding
method 2 of [1], in which the plaintext is padded with a single ‘1’ and as many ‘0’s
as are necessary to complete a block, seems like a good candidate. We currently
know of no reason not to recommend it for use. We argue that the more complete
and unambiguous a specification is, the smaller the chance for insecure approaches
to be taken by an implementor.

Finally, we wish to repeat the point made in [6, 8] that padding oracle at-
tacks can be easily thwarted by the proper use of strong integrity checks. It
is now widely held that encryption should be accompanied by a data integrity
mechanism whenever feasible and appropriate. Of course there are situations
(for example, constrained environments) where the use of a MAC algorithm in
addition to encryption is not possible. In these scenarios, the careful selection of
a padding method and the avoidance of padding oracles in implementations is
of paramount importance.
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Appendix

We present here pseudo-code for the various algorithms developed in the text.

Algorithm 1.

Input: I, C1||C2|| . . . ||Cq

Output: LD

function 9797-1-m3-get-LD-general
l := 0
u := n − 1
repeat

h := �(l + u)/2	
Cq−1,h := Cq−1,h ⊕ 1
if oracle(I, C1||C2|| . . . ||Cq) = VALID then

l := h
else

u := h − 1
end if
Cq−1,h := Cq−1,h ⊕ 1

until l = u
return LD := (q − 1)n + l + 1

end function
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Algorithm 2.

Input: auxiliary ciphertexts C1, C2, . . . , Cm, IV-determining information I1, I2,
. . . , Im, length information q1, . . . , qm and F1, . . . , Fm, target ciphertext blocks
Ck−1, Ck

Output: rightmost n − F1 bits of Pk

function 9797-1-m3-decrypt
R := 00 . . . 0︸ ︷︷ ︸

n

Fm+1 := n
for j := m to 1 do

i := −1
repeat

i := i + 1
S := R ⊕ 00 . . . 0︸ ︷︷ ︸

Fj

(i)2︸︷︷︸
Fj+1−Fj

00 . . . 0︸ ︷︷ ︸
n−Fj+1

until oracle(Ij , Cj
1 || 00 . . . 0|| . . . ||00 . . . 0︸ ︷︷ ︸

qj−3 blocks

||S||Ck) = VALID

R := R ⊕ 00 . . . 0︸ ︷︷ ︸
Fj

(i)2︸︷︷︸
Fj+1−Fj

00 . . . 0︸ ︷︷ ︸
n−Fj+1

end for
return rightmost n − F1 bits of R ⊕ Ck−1

end function

Algorithm 3.

Input: Ck, r, n
Output: A valid three-block ciphertext, the last block of which is Ck

Require: 1 ≤ r < n

function 10118-1-m3-general(Ck, r, n)
R1 := 00 . . . 0︸ ︷︷ ︸

n

R2 := 00 . . . 0︸ ︷︷ ︸
n

i := 0
while oracle(R1||R2||Ck) = INVALID do

i := i + 1
R2 := 00 . . . 0︸ ︷︷ ︸

n−r−1

(i)2︸︷︷︸
r+1

end while
return R1||R2||Ck

end function
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Algorithm 4.

Input: Ck, r, n
Output: A valid four-block ciphertext, the last block of which is Ck

Require: r = n

function 10118-1-m3-special(Ck, r, n)
R1 := 00 . . . 0︸ ︷︷ ︸

n

R2 := 00 . . . 0︸ ︷︷ ︸
n

i := 0
while oracle(00 . . . 0︸ ︷︷ ︸

n

||R1||R2||Ck) = INVALID do

i := i + 1
if i = 2r then

i := 0
R1 := 00 . . . 01︸ ︷︷ ︸

n

end if
R2 := (i)2︸︷︷︸

n

end while
return 00 . . . 0︸ ︷︷ ︸

n

||R1||R2||Ck

end function

Algorithm 5.

Input: C1||C2|| . . . ||Cq, n, r
Output: LD

Require: q ≥ 3

function 10118-1-m3-find-LD-general(C1||C2|| . . . ||Cq, n, r)
C := C1||C2|| . . . ||Cq

l := (q − 2)n + n − r
u := (q − 1)n + n − r − 1
repeat

h := �(l + u)/2�
C�h/n�,h mod n := C�h/n�,h mod n ⊕ 1
if oracle(C) = VALID then

l := h + 1
else

u := h
end if
C�h/n�,h mod n := C�h/n�,h mod n ⊕ 1

until l = u
return LD := l

end function
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Algorithm 6.

Input: C1||C2, n, r
Output: LD or “Plaintext length at most n”

function 10118-1-m3-find-LD-special(C1||C2, n, r)
C := C1||C2

l := n
u := 2n − r − 1
repeat

h := �(l + u)/2�
C�h/n�,h mod n := C�h/n�,h mod n ⊕ 1
if oracle(C) = VALID then

l := h + 1
else

u := h
end if
C�h/n�,h mod n := C�h/n�,h mod n ⊕ 1

until l = u
if l > n then

return LD := l
else

return “Plaintext length at most n”
end if

end function

Algorithm 7.

Input: LD, Cq−1, Cq, r, n
Output: Pq := Pq,0Pq,1 . . . Pq,t−1 10 . . . 0︸ ︷︷ ︸

p

(LD)2︸ ︷︷ ︸
r

Require: LD indicates that the plaintext is same-block padded

function 10118-1-m3-decrypt(LD, Cq−1, Cq, r, n)
t := LD mod n
p := n − r − t
R := Cq−1 ⊕ 00 . . . 0︸ ︷︷ ︸

t

10 . . . 0︸ ︷︷ ︸
p

(LD)2︸ ︷︷ ︸
r

⊕ 00 . . . 0︸ ︷︷ ︸
n−r

(n + t)2︸ ︷︷ ︸
r

for j := t − 1 to 0 do
R := R ⊕ 00 . . . 0︸ ︷︷ ︸

n−r

(n + j + 1)2︸ ︷︷ ︸
r

⊕ 00 . . . 0︸ ︷︷ ︸
n−r

(n + j)2︸ ︷︷ ︸
r

Pq,j := Ω̄(R||Cq)
Rj := Rj ⊕ Pq,j

end for
return Pq := Pq,0Pq,1 . . . Pq,t−1 10 . . . 0︸ ︷︷ ︸

p

(LD)2︸ ︷︷ ︸
r

end function
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Abstract. This paper presents the results of a preliminary analysis of
the stream cipher Mugi. We study the nonlinear component of this cipher
and identify several potential weaknesses in its design. While we can not
break the full Mugi design, we show that it is extremely sensitive to
small variations. For example, it is possible to recover the full 1216-bit
state of the cipher and the original 128-bit secret key using just 56 words
of known stream and in 214 steps of analysis if the cipher outputs any
state word which is different than the one used in the actual design.
If the linear part is eliminated from the design, then the secret non-
linear 192-bit state can be recovered given only three output words and
in just 232 steps. If it is kept in the design but in a simplified form,
then the scheme can be broken by an attack which is slightly faster than
exhaustive search.
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1 Introduction

Mugi is a fast 128-bit key stream cipher [4] designed for efficient software
and hardware implementations (achieves speeds which are 2-3 times faster than
Rijndael in hardware and slightly faster in software). The cipher was selected
for standardization by the Japanese government project CRYPTREC and is also
one of the two proposed ISO stream cipher standards.

Previous analysis of Mugi given by its designers in [1] concentrated on linear
cryptanalysis and resynchronization attacks. A recent work by Golic [3] studied
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only the linear component of the cipher. No security flaw of the full cipher has
been reported so far.

In this paper we study the non-linear component of this cipher, and identify
several potential weaknesses in its design. However we do not make any claim
as to the security of the full Mugi which remains unbroken.

This paper is organized as follows: in Sect. 2 we describe the cipher Mugi,
in Sect. 3 we describe two attacks on its non-linear component, and Sect. 4
concludes the paper.

2 Description of Mugi

The design of Mugi is based on the design philosophy proposed by J. Daemen
and C. Clapp in their stream cipher Panama [2]. The internal state of the cipher
at time t consists of two parts: a linearly changed large buffer b(t), and a non-
linearly evolving shorter state a(t). See Fig. 1 for a schematic description. The

λ

b
(t)

State

ρ

Output

Buffer a
(t)

Fig. 1. The evolution of the Mugi state

cipher works in steps called rounds. At each round the internal state is updated
and one of its three 64-bit words is produced as output. The evolution of the
buffer which consists of sixteen 64-bit words happens in a LFSR-like slow fashion,
together with a 64-bit feedback from the nonlinear state at each round:

b(t+1) = λ(b(t), a(t)),

or more explicitly:

b
(t+1)
j = b

(t)
j−1(j �= 0, 4, 10)

b
(t+1)
0 = b

(t)
15 ⊕ a

(t)
0

b
(t+1)
4 = b

(t)
3 ⊕ b

(t)
7

b
(t+1)
10 = b

(t)
9 ⊕ (b(t)

13 ≪ 32)

The evolution of the state a(t) is essentially a block cipher-like invertible process,
in which two 64-bit words coming from the buffer are used as subkeys:
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S S S S

MDS

S S S S

MDS

Buffer

Fig. 2. The F-function

a(t+1) = ρ(a(t), b(t)),

or more explicitly:

a0
(t+1) = a1

(t)

a1
(t+1) = a2

(t) ⊕ F (a1
(t), b4

(t))⊕ C1

a2
(t+1) = a0

(t) ⊕ F (a1
(t), b10

(t) ≪ 17)⊕ C2 ,

where C1, C2 are known constants. The F function reuses an S-box and MDS of
the AES as shown in Fig. 2. The output function of Mugi is very simple:

Output[t] = a
(t)
2 ,

i.e. one of the three 64-bit words in the internal state is given as output prior to
the evaluation of the round t.

3 Cryptanalysis of the Two Variants of Mugi

In this section we cryptanalyse several variants of Mugi.

3.1 Change in the Output Function

The output function of Mugi outputs the 64-bit word a
(t)
2 before the tth round.

In this section we show that Mugi is very sensitive to small changes in the
output function. For example, if the output would consist of the same word a

(t)
2

but after the evaluation of the round t (or equivalently the word a
(t+1)
1 ), then

the full cipher could be easily broken with practical complexity. In general, for
any choice of a output word other than the one used in the actual design (i.e.,
either a

(t)
0 or a

(t)
1 ) the cipher can be easily broken.
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We denote by the Greek letters α, β, γ, δ, ε an intermediate value a
(t)
1 which is

used as the input to the two F -functions in each round. Suppose that Output[t] =
a
(t)
1 . Let us make several important observations. The first observation is that

a
(t)
1 = a

(t+1)
0 and thus we know the word that updates the buffer at each round.

This would allow us to run the buffer update function λ(·) symbolically and write
linear equations for the buffer bits, including those that enter the non-linear ρ

function as ”sub-keys”. The second observation is that the word a
(t)
1 is used as

the input to both F -functions of the round. The final observation is that we can
write the following equation:

α⊕ δ = F (β, b
(t+1)
10 ≪ 17)⊕ F (γ, b

(t+2)
4 ). (1)

In this equation α, β, γ and δ are words from the output stream and are thus
known to the attacker (see also Fig. 3). Let us denote the inverse of the MDS

b 4

(t+1)

b 4

(t)

b 4

(t+2)

b10

(t)

10b
(t+1)

10b
(t+2)

FF

FF

FF
α

β

γ

δ

α

δ0a

a 0

(t+1)

(t+2)

a 0

(t)

Fig. 3. The attack path

and the byte swap layers by M−1 and the eight S-box layer by S. By applying
the inverse of the linear layer of F to both sides of the equation we can get the
simplified equation:

M−1(α⊕ δ) = S(β ⊕ (b(t+1)
10 ≪ 17))⊕ S(γ ⊕ b

(t+2)
4 ). (2)

which decomposes into 8 independent equations in the 8 bit values of each S-box.
One of the possible ways to use this equation is to look for points in the output
stream in which at least one of the bytes of M−1(α⊕ δ) is zero. For a particular
S-box this would lead to a simpler equation:
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S(β ⊕ (b(t+1)
10 ≪ 17)) = S(γ ⊕ b

(t+2)
4 ), (3)

which further simplifies to:

(b(t+1)
10 ≪ 17)⊕ b

(t+2)
4 = β ⊕ γ. (4)

This is an 8-bit linear constraint on the bits of the buffer. It is sufficient to gather
about 1024/8 = 128 such equations in order to get a system of linear equations
for all the buffer bits. The probability that at least one zero value occurs in each
64-bit block is 1 − (1 − 1/256)8 ≈ 2−5. Thus given about 25 · 128 = 212 output
words the attacker would expect to obtain a solvable system of equations and
reconstruct the full 1024-bit buffer. Knowing the buffer at some round t and the
output words a

(t−1)
1 , a

(t)
1 , a

(t+1)
1 the attacker can recover the state a(t) as follows:

(a(t)
0 , a

(t)
1 , a

(t)
2 ) = (a(t−1)

1 , a
(t)
1 , F (a(t)

1 , b
(t)
4 )⊕ a

(t+1)
1 ).

Since all the steps in the cipher are invertible, knowing the buffer and the state at
some point t enables the attacker to run the cipher both forwards and backwards.
By running the cipher backwards the attacker can recover the initial 128-bit
secret key.

The total complexity of this attack is O(212) words of known stream (about
215 bytes) and O(230) steps to solve a system of 210 equations. The same attack
would work for the case Output[t] = a

(t)
0 .

An important remark is that the attack did not use any properties of the
S-box, and thus can work even when the S-box is unknown or key-dependent.
The attack will first recover the buffer using the technique described above and
then derive the unknown S-boxes from Eq. 2 by writing a set of equations of the
form

S(c1)⊕ S(c2) = c3, (5)

where c1, c2, c3 are known values. Given k + 3 output stream words the attacker
can write 8k equation for the unknown S-box. He will need O(256) 64-bit outputs
due to a ”coupon collector”-like argument in order to write and solve a system
of linear equations in terms of the entries of the unknown S-box. Note that in
this attack it is important that the S-box is invertible, since otherwise we can
write Eq. (4) only probabilistically.

Another observation is that we can use the ”buffer elimination” equations
from [3] to attack this variant of Mugi with even smaller data and time com-
plexity, since we will not need to spend O(230) operations in order to solve the
system of linear equations.

The equations are as follows (t ≥ 48, and <32 stands for cyclic 32-bit rotation
of a 64-bit word to the left):

a
(t)
1 ⊕ a

(t−48)
1 ⊕ F−1(a(t+1)

1 ⊕ a
(t)
2 ⊕ C1)⊕ F−1(a(t−47)

1 ⊕ a
(t−48)
2 ⊕ C1) =

a
(t−6)
1 ⊕ a

(t−10)
1 ⊕ a

(t−14)
1 ⊕ a

(t−18)
1 ⊕ a

(t−26)
1 ⊕ a

(t−30)
1 ⊕ a

(t−34)
1 ⊕ a

(t−38)
1

⊕<32a
(t−26)
1 ⊕<32 a

(t−42)
1
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a
(t)
1 ⊕ a

(t−48)
1 ⊕ F−1(a(t−1)

1 ⊕ a
(t+1)
2 ⊕ C2)⊕ F−1(a(t−49)

1 ⊕ a
(t−47)
2 ⊕ C2) =

<17a
(t−12)
1 ⊕<17 a

(t−16)
1 ⊕<17 a

(t−32)
1 ⊕<17 a

(t−44)
1 ⊕<49 a

(t−16)
1

⊕<49a
(t−20)
1 ⊕<49 a

(t−32)
1 ⊕<49 a

(t−36)
1

One notices two interesting properties of these two equations: there are only
two instances of a2 in each equation and they are 48 time steps appart in both
equations. Thus if we assume that the sequence a

(t)
1 is known, those equations

reduce to simpler equations:

F−1(a(t)
2 ⊕ C ′

1)⊕ F−1(a(t−48)
2 ⊕ C ′′

1 ) = const1 (6)

F−1(a(t)
2 ⊕ C ′

2)⊕ F−1(a(t−48)
2 ⊕ C ′′

2 ) = const2 (7)

in which all the quantities are known except for the two unknowns a
(t)
2 and

a
(t−48)
2 . If we denote x = M−1(a(t)

2 ) and y = M−1(a(t−48)
2 ), then we can take

care of the linear mapping, and write further simplified equations:

S1(x)⊕ S2(y) = const1 (8)

S3(x)⊕ S4(y) = const2 (9)

where S-boxes S1, S2, S3, S4 are known and are derived from S−1 and the known
constants. By solving the system we derive the full words a

(t)
2 and a

(t−48)
2 in just

8 ·28 = 211 steps. Repeating this procedure about eight times for t, t+1, . . . , t+7
we find eight consecutive words a

(t)
2 , a

(t+1)
2 , . . . , a

(t+7)
2 , which allows us to directly

derive the bits of the buffer without solving a system of linear equations. The
complexity of this approach is about 214 very simple steps and it uses about 56
output words and negligible memory1. This second attack uses the knowledge of
the S-boxes and the special properties of the buffer update function, which were
not important in our first attack.

3.2 Attacking the Non-linear Part of Mugi

In this section we present an attack that efficiently recovers the 192-bit non-
linear state of the cipher when part of the buffer is known to the attacker. It
turns out that it is sufficient to know only two words of the buffer b

(t)
4 and b

(t)
10

in order to mount this attack. The attack uses only 3 output words and has
a complexity of O(232) steps. Note that the cipher is unchanged, including the
original output function of Mugi: Output[t] = a

(t)
2 .

1 The attack can be done even faster in only 26 steps, if we are allowed to do a single
precomputation of 232 steps in order to produce a table that would occupy 232 bytes
and would store the solution for the system of equations (8) and (9).
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a 0

(t+1)

a 0

t

10

(t+1)
b

b10

(t)

FF

b 4

FF
α

β

b 4

(t)

(t+1)

a
(t)

(t+2)

2

2a

Fig. 4. The loop in the ρ function

The attacker can consider the following loop in the ρ function (see also Fig. 4):

F (α, b
(t)
4 )⊕ a

(t)
2 = β (10)

F (β, b
(t+1)
10 )⊕ a

(t+2)
2 = α. (11)

Here the a
(t)
2 , a

(t+2)
2 and the keys b

(t)
4 , b

(t+1)
10 are known. Then we have a system

of two non-linear but simple one-round equations with two variables α and β.
In order to find the solution of the system the attacker may proceed as follows:

1. Guess the first four bytes of β (denoted 0,1,2,3, with 232 possibilities). Here
we enumerate the bytes of Fig. 2 from left to right, starting from 0.

2. For each possibility, find the middle four bytes (2,3,4,5) of α.
3. At this stage, we know two bytes (number 2,3) at the input and at the output

of the first MDS at round t. The first two bytes (number 0,1) of the input
can be found from a system of linear equations:{

x0 + x1 = c0

3 · x0 + x1 = c1,

where c0, c1 are known values computed from bytes 2,3 of input and output.
Knowing the new input bytes x0, x1 we can calculate the missing output
bytes y0, y1. As a result we will find two additional bytes of α and β and
thus we know bytes number 0,1,2,3,4,5 of these words. Due to the byte swap
after the MDS being an involution, we can get in a similar fashion a similar
set of constraints knowing bytes 4,5 at the input and the output of the second
MDS and solving a system of equations for the bytes 6,7 at the same round
t. As a result we completely recover α and β.

4. At this point we know 128 bits of the state a by knowing a
(t)
1 = α, and the

known output a
(t)
2 . The remaining 64 bits can be found as follows:

a
(t)
0 = F (α, b

(t)
4 )⊕ a

(t+1)
2 .

We see that given two buffer words and 3 output words, we can completely
recover the 192-bit secret state a(t) in O(232) simple steps. If this attack has to
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be performed multiple times for example as part of another attack on the full
cipher – it can be sped up by precomputation.

3.3 Mixing One Buffer Word per Round

For Mugi it is crucial that two 64-bit buffer words are mixed at each round,
while only a single 64-bit word is given as output. In this section we present
an attack that recovers the full secret state of the cipher (both the state a(t)

and the buffer b(t)) when only one word is mixed per round. The rest of the
cipher structure is kept intact. The complexity of this attack is equivalent to
O(2126.5) key searching steps steps, but the similarity between this complexity
and exhaustive key search is accidental since the complexity of our attack would
remain the same even if Mugi had much larger keys2. Note that this is much
faster than the alternative type of exhaustive search over the 192-bit state and
the 1024-bit buffer.

Consider a variant of Mugi in which both F -functions of each round share
a common key3, for example and without loss of generality, b

(t)
4 . We could reuse

the previous attack by guessing the two buffer words b
(t)
4 , b

(t+1)
4 and recovering

the state a(t) in O(2160) steps. However there is a much faster direct attack:

1. At round t we know word a
(t)
2 and we guess the remaining parts of the

non-linear state: a
(t)
0 , a

(t)
1 (a 128-bit guess).

2. We find the buffer word b
(t)
4 used as the key in round t from the equation:

F (a(t)
1 , b

(t)
4 )⊕ a

(t)
0 = a

(t+1)
2 ,

in which all values except for the key are either guessed or known from the
output stream.

3. We use the newly recovered key to compute the unknown word a
(t+1)
1 of the

next state:
a
(t+1)
1 = F (a(t)

1 , b
(t)
4 )⊕ a

(t)
2 .

4. Go to step 2, and repeat it 16 times for the following rounds till we know the
full 16 word buffer. Once we start reusing buffer words we can check them
for possible contradictions.

Note that since at each step we know the full non-linear state, we know the
update function of the buffer and we can thus run the buffer update-function

2 This complexity is about 3 times faster than exhaustive search of the actual 128-bit
key of Mugi ; to verify each guessed key, Mugi has to perform 48 initial key setup
rounds, whereas our attack verifies or discards a guessed pair of buffer words after
only 16 rounds.

3 The attack can also tolerate a construction in which given a buffer word b the keys
of the round are derived via known and easy to invert permutations: k1 = f(b), k2 =
g(b). For example, a rotation of the buffer word by 17 as used in Mugi would not
make the attack any harder.
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λ(·) symbolically. The attack uses 18 output stream words, and its complexity
is equivalent to 16

48 · 2128 key searching steps . The attack completely recovers
the 1024+192-bit internal state of the cipher, and by using the invertibility of
the operations we can also recover the 128-bit original secret key. The Table 1
summarizes the results of our attacks on the non-linear component of Mugi.

Table 1. Our attacks on the non-linear component of Mugi

Cipher Variant Known Streama Time Complexity The Attack Recovers

Change in the output functionb O(212) O(230) full 192+1024 state
Change in the output functionc 56 O(214) full 192+1024 state

Attack on non-linear component 3 O(232) 192 bits of a(t)

One buffer word per round 18 O(2126.4) full 192+1024 state

Exhaustive search 2 O(2128) full 192+1024 state

a Expressed in 64-bit words.
b The same complexities even if S-boxes are unknown or key-dependent.
c Using the buffer elimination observation from [3] and the knowledge of the S-boxes.

4 Conclusions

In this paper we have identified several potential weaknesses of Mugi:

– The output function reveals 1/3 of the state without any masking. It would
be better to reveal fewer bits which are a more complex function of the
current state.

– The mixing affects only 4 bytes per round. It would be better to mix all the
8 bytes simultaneously.

– Knowledge of the middle word allows for very powerful attacks to be mounted.
However, this attack is avoided by the actual design.

– The feedback from the nonlinear state is added to the buffer in a linear way.
It would be better to avoid this additional linearity.

In spite of these potential weaknesses, the full Mugi is still unbroken. The two
factors that make our attacks impractical on the real Mugi is the large size of
the buffer and the fact that the cipher mixes two key-words per-round while it
outputs only a single word.
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Abstract. Hiji-Bij-Bij (HBB) is a new stream cipher proposed by Sarkar
at Indocrypt’03. In this algorithm, classical LFSRs are replaced by cel-
lular automata (CA). This idea of using CAs in such constructions was
initially proposed by Sarkar at Crypto’02, in order to instantiate its new
Filter-Combiner model.

In this paper, we show two attacks against HBB. First we apply
differential cryptanalysis to the self-synchronizing mode. The resulting
attack is very efficient since it recovers the secret key by processing a
chosen message of length only 2 Kbytes. Then we describe an algebraic
attack against the basic mode of HBB. This attack is much faster than
exhaustive search for secret keys of length 256 bits.

1 Introduction

Stream ciphers are an important class of secret key cryptosystems. Unlike block
ciphers which view the plaintext as blocks of bits (typically 64 bits for the DES or
128 bits for the AES), stream ciphers handle each bit of plaintext separately. Ba-
sically, a stream cipher generates a long pseudo-random sequence (or keystream)
from a seed (usually the secret key). This sequence is XORed with the plaintext
to produce the ciphertext. It is widely believed that secure stream ciphers can
be much faster than block ciphers.

Yet, over the last years, few stream cipher proposals have resisted cryptanal-
ysis efforts. For instance, none of the stream ciphers candidate for the NESSIE
project has been selected in the final portfolio [24], since all schemes revealed
various degrees of weakness. Many of these attacks originate from the mathemat-
ical structure of Linear Feedback Shift Registers (LFSR) [5, 8], which are used as
a building block by many stream ciphers. To avoid these security concerns, alter-
native solutions have been recently proposed. For instance, Klimov and Shamir
have suggested to replace LFSRs by software-efficient nonlinear mappings based
on T-functions [19].

Another contribution came from Sarkar at Crypto’02 [26]. He showed that
some classical models for LFSR-based stream ciphers (Nonlinear Filter and
Nonlinear Combiner) do not provide optimal security against Correlation At-
tacks [30]. He proposed to mix these two concepts, using a new paradigm, the
Filter-Combiner Model. Unfortunately, he also showed that such a construction

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 330–341, 2005.
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cannot be instantiated with LFSRs since they do not fulfill some of the basic
requirements. Instead, the author showed that cellular automata are good can-
didates to replace LFSRs in this model. Moreover, they seem to improve the
resistance against some classical attacks such as Inversion Attacks [15, 16] or the
Anderson Leakage [1]. However it was recently shown that this new construction
did not necessarily increase the level of security [17].

In this paper we focus on the HBB stream cipher. This new algorithm [27]
was proposed at Indocrypt’03 by Sarkar. HBB is not exactly an instantiation of
the Filter-Combiner model (since the non-linear component has a memory) al-
though its linear map is based on cellular automata. The outputs of the cellular
automata are combined with a nonlinear map achieved using some of the primi-
tives from Rijndael [12]. In addition, HBB has the particularity of offering a Self-
Synchronizing (SS) mode of operation, in addition to the basic (B) mode of oper-
ation. Self-synchronizing stream ciphers are a rare primitive which can be useful
in specific contexts [21]. However few dedicated designs have been proposed and
many published proposals (such as [11]) did not resist cryptanalysis [18]. In fact,
it is an open problem to design a secure dedicated self-synchronizing stream
cipher.

In this paper, we show that both modes of operation of HBB suffer from
important flaws. Against the SS mode, we use a differential attack which recovers
the secret key by processing 214 bits of chosen ciphertext. We also describe an
algebraic attack against the B mode of operation, faster than exhaustive search
for key size of 256 bits. In a first section, we give a brief overview of cellular
automata and of the HBB cipher. Then, we describe our attack against the
Self-Synchronizing mode of operation. Finally, we focus on the Basic mode of
operation and apply algebraic cryptanalysis.

2 Stream Ciphers Based on Cellular Automata

2.1 Cellular Automata Preliminaries

In general, an automaton consists in a set of l memory cells, represented at time
t by S(t) = (s(t)

1 , . . . , s
(t)
l ), with a rule of evolution for each cell depending on

the content of neighboring cells. Details of the theory of cellular automata are
not relevant here, refer to [27] for more information. Basically, the only property
we really take advantage of is their linear behavior. More precisely, a cellular
automaton can be associated with a matrix M that characterizes its evolution.
S(t+1) can then be computed by multiplying S(t) with M . This matrix has the
additional properties of being tridiagonal and having a primitive characteristic
polynomial. This guarantees that the linear recurrence has maximal period 2l−1.

2.2 Overview of the HBB Cipher

HBB is a classical keystream generator, which contains a linear finite state ma-
chine and a nonlinear part. It is not a basic instantiation of the Filter-Combiner
model [26] since its nonlinear part has memory (128 bits of internal state), how-
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ever it belongs to the same family. According to [27], the use of cellular automata
should improve the security of the cipher against some attacks using the specific
properties of LFSRs.

General Structure of the Cipher. An overview of HBB is given in Figure 1.
LC represents the Linear Component (which contains 512 bits of internal state),
and NLC represents the Non Linear Component (which contains 128 bits of
internal state).

128128
128

LC
(512 bits)

NLC
(128 bits)

updateupdate

Keystream

CiphertextPlaintext

Fig. 1. One round of Hiji-Bij-Bij

Both LC and NLC have an update function which is applied at each round
to their internal state. Then, 128 bits of keystream are extracted using a linear
transform. To summarize, one round of encryption can be expressed as

1. Update the internal state of NLC
2. Update the internal state of LC
3. Extract 128 bits from LC and XOR it with NLC. The result is the keystream.
4. Extract 128 other bits from LC and XOR it with NLC. The result is the

next state of NLC.

In general, this technique for producing keystream bits with a whitening layer
after the nonlinear operations is called “linear masking” (see [5]). The initial
states of LC and NLC are derived linearly from the secret key K. Then 16 rounds
are applied for divergence, without using the output keystream for encryption.
However the last 512 bits of keystream are XORed to the internal state of LC
just before the beginning of encryption. Two key sizes are suggested for HBB :
128 and 256 bits.

The Round Function. The updating function of LC is based on the cellular
automata theory. Details can easily be obtained from [27]. In fact, there are two
cellular automata of size 256 bits each. Both matrices contains entries of the
form (c1, . . . , c256) on the main diagonal, and all entries equal to 1 on the upper
and lower subdiagonals.
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S-box

S-box

Linear Mapping

NLC

NLC

Fig. 2. The NLC updating function

The updating function of NLC can be seen as one round of a block cipher (see
Figure 2). It consists of three consecutive layers. The first and third layers apply
the Rijndael S-box [12] to each byte of NLC. The intermediate layer is a simple
linear application over F2. The author of HBB shows that the global function
has full diffusion, thus any output bit depends on all input bits. Moreover, linear
approximation have been analyzed and it is shown in [27] that none can have a
bias better than 2−12 (actually, it says 2−13, but bias are represented as 0.5 ±
ε, while we prefer the convention 0.5(1 ± ε)). Thus, according to the author,
the cipher should resist attacks based on linear approximations, such as linear
cryptanalysis [20] and correlation attacks [30]. Finally, the previous elements
give an implicit description of the Basic (B) mode of operation of HBB.

The Self-synchronizing (SS) Mode of Operation. A Self-Synchronizing
mode can be easily derived from the above description by making the keystream
dependent on the previous bits of ciphertext. To do this, one additional step is
added to the previous description.

At the end of round i, the last four blocks of ciphertext (128 bits each),
represented as Ci, Ci−1, Ci−2 and Ci−3, are XORed together with the secret
key K (if K is 256 bits long, both halves of K are first XORed together). The
resulting value is the new internal state of NLC :

NLC = Fold(K)⊕ Ci ⊕ Ci−1 ⊕ Ci−2 ⊕ Ci−3

On the linear side of the generator, the secret key K is linearly expanded into
a 512 bits value, then XORed with the concatenation of the last four ciphertext
blocks, to produce the new value of LC :

LC = Expand(K)⊕ (Ci||Ci−1||Ci−2||Ci−3)
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Therefore, in the SS mode, the internal state of the cipher at the beginning of
each round depends only on the secret key and the last 512 bits of ciphertext,
in a linear manner.

3 Cryptanalysis of the SS Mode of Operation

In this section, we focus on the SS mode of HBB with secret key K of 128 bits
long. Each round of encryption simply consists in a fixed function applied to K
and the last 4 blocks of ciphertext. We show that this construction actually does
not resist to a chosen-ciphertext differential attack.

3.1 Background on Self-synchronizing Stream Ciphers

Generally a Self-Synchronizing Stream Cipher (SSSC) is one in which the key-
stream bit is a function of the key and a fixed number m of previous ciphertext
bits.

This parameter m is called the memory of the cipher.
In order to describe formally a SSSC, let xt denote plaintext bit number t,

yt the corresponding ciphertext bit and zt the corresponding keystream bit. The
encryption is generally described

yt = xt ⊕ zt

where the keystream bit is computed as

zt = F (yt−1, . . . , yt−m, K)

F denotes the keystream function and K the secret key. The basic idea is to en-
crypt each plaintext bit with a function depending only on the secret key and the
previous m ciphertext bits. Therefore each ciphertext bit can be correctly deci-
phered as long as the previous m ciphertext bits have been successfully received.

General properties and design criteria for SSSCs have been studied by Mau-
rer [21]. It pointed out that a self-synchronization mechanism has several ad-
vantages from an engineering point of view. For instance, it may be helpful in
contexts where no lower layer of protocol is present to assure error-correction.
In particular, it prevents long bursts of error when a bit insertion or deletion
occurs during the transmission of the ciphertext.

However in terms of security the analysis of SSSCs requires a completely
different approach from conventional stream ciphers. Indeed, since the pseudo-
random generator does not behave autonomously, the cipher might be subject to
chosen message attacks. Therefore it is not straightforward to turn a conventional
stream cipher into a SSSC and few dedicated designs have been proposed. Using a
block cipher in 1-bit Cipher FeedBack (CFB) mode [14] is usually quite inefficient
in terms of encryption speed, and reduced-round optimizations may be subject
to attacks [25]. KNOT, one of the few dedicated designs [11] was broken at
FSE’03 [18]. An improved version of KNOT, described in Daemen’s thesis [10],
appears to resist this attack, but currently there is no other secure dedicated
SSSC in the literature.
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3.2 The Attack Against HBB in SS Mode

This section describes a differential attack using chosen ciphertexts. Accordingly,
we suppose that an attacker gains access to a decryption oracle and introduces
chosen blocks of ciphertext.

The goal of the attacker is to obtain two inputs of the NLC round function
that differ only on one byte, with difference δ. This can be achieved by intro-
ducing the blocks of ciphertext C1, C2, C3, C4 and then C1, C2, C3, C4 ⊕ δ. Let j
denote the position of this one byte difference and Kj the corresponding byte of
secret key.

At first sight, it seems that the attacker has no access to the output difference
of the NLC updating function because of the linear masking. However at the
beginning of each round, LC is set to the value (see Section 2.2)

LC = Expand(K)⊕ (Ci||Ci−1||Ci−2||Ci−3)

thus the difference of linear masking is a purely linear function of the introduced
ciphertexts only. Thus an attacker able to observe the keystreams can cancel out
the difference of linear masking and observe directly the output difference of the
NLC updating function.

Initially, the difference δ is confined to one byte. In addition, after the first
layer of S-box in this computation, the difference still only concerns the byte
number j in the internal state. This difference is of the form

δ′ = S(Kj ⊕ x)⊕ S(Kj ⊕ x⊕ δ) (1)

where x is a known byte depending on the introduced ciphertext. If δ′ has ham-
ming weight equal to 1, it is true by construction that the hamming weight of
the difference after the linear layer will be exactly 3 (see [27]). Thus, only 3
bytes will differ after the last layer of S-boxes. This difference trail on NLC is
described in Figure 3 where dashed areas represent the differences.

S-box

Linear Layer

S-box

Fig. 3. An illustration of the Differential Trail on NLC

We observe that, when hamming(δ′) = 1, the difference on the output of the
NLC updating function is null for 13 bytes of 16. Otherwise this property is
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very unlikely. In average the event that the hamming weight of δ′ is 1 happens
with probability 8

256 = 2−5. Thus, according to the birthday paradox, testing 23

values of δ should be sufficient to detect a collision on 13 out of 16 output bytes.
This event provides a condition on Kj using relation (1), of the form

hamming(S(Kj ⊕ x)⊕ S(Kj ⊕ x⊕ δ)) = 1

In general, only a few Kj values will verify it. Furthermore it is straightforward
to eliminate false candidates for Kj with a few extra decryption queries. To
summarize, one byte of secret key can be recovered by processing about 23 = 8
blocks of keystream in average. Repeating it 16 times, the full secret key can be
easily obtained.

Moreover this attack can be mounted by processing just a single message.
Indeed an attacker can just concatenate all the chosen ciphertexts he needs for
successive applications of the attack and submit the resulting message to the
decryption oracle. In practice this can be done by just adapting the choice of
ciphertext block number i to the previous blocks of ciphertext. Therefore, to
process 23 × 16 blocks of keystream, a message of length 3 + (23 × 16) blocks
is sufficient. This corresponds to about 2 Kbytes of chosen ciphertext. Besides,
when δ′ has hamming weight equal to 2, 3 or 4, we also obtain detectable colli-
sions on the keystream. So, we think it is even possible to lower a little our data
requirement, using a precise analysis of all these events. We have implemented
our attack using only the case of hamming weight 1 and were able to recover
successfully the bytes of secret key as expected, with about 8 blocks/byte. An
attack against the 256 bits secret keys would work by first recovering the 128
bits used in NLC, and then obtaining the remaining key bits by other means.

This attack represents a real threat in practical applications where the SS
mode of the HBB cipher is used. Indeed, an active attacker can easily introduce
a chosen ciphertext sequence of a few Kbytes in the communication layer. Since
self-synchronizing modes of operation are usually implemented for fast streaming
communications on faulty channels, it is even likely that the error caused by the
action of the attacker would go unnoticed. Then, if the attacker is able to observe
the resulting decrypted plaintext, our attack applies and he would recover the
complete secret key with little offline processing. Thus, we believe the SS mode
of operation of HBB is weak and should not be used as proposed. More generally,
resistance of self-synchronizing stream ciphers against differential attacks should
always be investigated, as in the case of block ciphers (see [22] for more details).

4 Algebraic Attack Against the B Mode of Operation

In the previous section, we have described a very efficient differential attack
against the SS mode of HBB. Obviously, this attack does not apply to the Basic
mode of operation since the attacker cannot choose the inputs of NLC (or LC)
at each round. However, other cryptanalysis techniques may be envisaged here.
In particular we propose an algebraic attack against HBB which is faster than
exhaustive search for a key size of 256 bits.
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4.1 Algebraic Attacks and Stream Ciphers

Algebraic attacks form a class of cryptanalysis techniques which has received a
huge interest in the last years. Indeed new applications have been described in
various fields including block ciphers [9, 23], stream ciphers [7, 8] and even public
key cryptography [13]. Algebraic attacks exploit polynomial equations describing
exactly an algorithm. There is a contrast with classical cryptanalysis techniques
which are often based on approximations of the behavior of the algorithm. In
the recent years many stream ciphers [2, 3, 4, 8] have been broken using algebraic
attacks and it has now become important to investigate the security of new
algorithms regarding these techniques.

The general idea in algebraic attacks on stream ciphers is to write keystream
bits as a polynomial of low enough degree in the bits of the secret key, and
then apply an appropriate algorithm for solving this polynomial system. Many
strategies exist like the simple linearization attack or the refined relinearization
attack [28]. In these basic attacks, all monomials are replaced by new variables,
then the resulting linear system is solved by usual linear algebra. In some cases,
better strategies may also apply, such as sparse linear algebra or other dedicated
algorithms. For instance, Gröbner base techniques (for an illustration of these
techniques, see [13]) are a well-known mathematical tool helpful in the case of
algebraic attacks. Besides an alternative solution, the XL algorithm has also
been proposed [29] to resolve polynomial systems.

In general, for a recent cipher, it should be impossible to write low degree
equations involving the secret key bits and the plaintext bits. In the next section,
we show that HBB fails to meet these requirements.

4.2 The Case of HBB

It is not straightforward to express directly the keystream in function of the
secret key because of the divergence steps executed before the beginning of en-
cryption. However, an attacker can focus on recovering the initial state of LC
(of length 512 bits). Then in a second phase, it might be possible to recover
the key from the initial state, if necessary. Therefore we first focus on writing
polynomial equations between the keystream and the initial state.

In Figure 1, we can see that the internal state of NLC at the beginning of
any round i is a linear function of the initial state of LC and keystream bits.
Looking at two consecutive states of NLC, we can express both the input and
the output of the NLC updating function as linear functions of the initial state
and the keystream bits.

Besides, it is easy to write equations of degree 7 relating inputs and outputs
of the NLC updating function (referred to as Φ). Let (ai)0≤i≤127 and (bi)0≤i≤127

respectively denote the input and output bits of Φ. Notations ci and di are used
for the intermediate states after the first and second layer of Φ. It is well known
that the Rijndael S-box (and its inverse) has algebraic degree 7, i.e. the output
bits of the S-box (and its inverse) can be expressed as degree 7 polynomials in
its input bits. Consequently,

bi = Pi(a0, . . . , a127)
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where Pi is a polynomial of degree 7. Similarly,

ci = Qi(d0, . . . , d127)

where Qi is a polynomial of degree 7. Furthermore, bi and ci are related by a
linear transform. Thus, 128 relations of degree 7 of the form

127∑
i=0

λiPi(a0, . . . , a127)⊕
127∑
i=0

μiQi(d0, . . . , d127) = 0

can be written. As we argued previously the ai’s and di’s depend linearly on the
initial state and the keystream, thus the previous relation can be rewritten as

Rt(v0, . . . , v511, Zt) = 0

where Rt is a degree 7 polynomial, the vi’s are the bits of initial state and Zt is
the keystream block number t (which is known).

The number of monomial of degree 7 on 512 unknowns is(
512
7

)
 250.6

which is not sufficient to provide a security level of 256 bits. Indeed, a simple
linearization attack would proceed by linear algebra on all monomials of degree
7. Using Gaussian elimination, the corresponding complexity would be about(

512
7

)3

 2151.8

basic binary instructions for inverting the matrix (2146.8 on a 32 bit processor).
Besides, about 250.6 bits of known plaintext would be needed. The solution of
this system reveals the initial state of the cipher from which it might be possible
to retrieve the actual secret key. This algebraic attack is faster than exhaustive
search only for keys of 256 bits.

However, with better linear algebra such as algorithms1 with exponent w =
log2(7), the complexity can be lowered to 2142.2 binary instructions, and we
even expect that better techniques exist, for instance if we exploit the sparsity
of the system. According to Courtois [7], this kind of attacks can also be further
improved by using optimized resolution algorithms and a precomputation step.
On the whole, it is likely that an improved version of this attack could break the
128 bit version of HBB.

This attack illustrates the fact that linear masking techniques and cellular
automata by themselves do not provide protection against the class of alge-
braic attacks. Basically there is too much linearity in this algorithm. This type

1 We did not consider other algorithms with smaller exponent such as the
Coppersmith-Winograd algorithm, because they are not practical enough.
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of problem is also encountered when using LFSRs as a building block. Sound
countermeasures are irregularly clocked stream ciphers, like the Shrinking Gen-
erator [6] or the use of nonlinear mappings as a building block instead of LFSRs
or cellular automata [19].

4.3 Recovering the Key from the Initial State

After the previous attack, we know the initial state of the linear component LC.
This is not fully satisfying in practice. It is often expected to go further and
recover the secret key. We refer to the initial state of LC as S. Our goal is to
derive from S the secret key K. We consider first the key size of 256 bits, since
the previous attack has a complexity larger than 2128.

By construction, S is a linear function of K and 4 keystream blocks (of 128
bits each) produced during the key schedule and discarded immediately after.
We call these blocks T0, . . . , T3 as in [27]. The first block of keystream (called
Z0) can be expressed by (see also Figure 1) :

Z0 = λ1(S)⊕ φ(T3 ⊕ λ2(K)) (2)

where λ1, λ2 are linear functions and φ is the NLC updating function. From (2),
we retrieve T3 ⊕ λ2(K), since φ is invertible. With this additional equation, we
get a total of

512 + 128 = 640

binary linear equations involving

256 + 4× 128 = 768

unknowns (corresponding to K, T0, T1, T2 and T3). In average this linear system
should contain 2128 solutions, one of them corresponding to the correct K. These
solutions can be obtained with the usual Gaussian reduction algorithm. The
complexity required here is about 2128 steps of computation. Besides, for keys
of 128 bits, there are 128 unknowns less in the system, hence only one solution
is expected.

To summarize, the extra work required to find K from the initial state of LC
depends on the key size. For keys of length 256 bits, this complexity is about
2128, and for keys of 128 bits, the complexity is negligble. These results allow to
complete the attacks against HBB without increasing the overall complexity.

5 Conclusion

In this paper, we have described two attacks against the new HBB stream cipher.
First a very efficient differential attack breaks the self-synchronizing (SS) mode of
operation by processing a message of length about 2 Kbytes. Then we described an
algebraic attack which breaks HBB in B mode with workload of about 2142 steps
of computation. This is faster than exhaustive search for secret keys of length 256
bits and we believe optimized versions could threaten 128 bit keys as well.
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These attacks enlighten some important weaknesses in the design of the new
HBB stream cipher. In addition, by breaking the SS mode, we have also shown
that the challenge of designing a secure dedicated self-synchronizing stream ci-
pher, initially proposed by [21] is still an open problem.
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Abstract. At FSE 2004 two new stream ciphers VMPC and RC4A have
been proposed. VMPC is a generalisation of the stream cipher RC4,
whereas RC4A is an attempt to increase the security of RC4 by intro-
ducing an additional permuter in the design. This paper is the first work
presenting attacks on VMPC and RC4A. We propose two linear distin-
guishing attacks, one on VMPC of complexity 254, and one on RC4A
of complexity 258. We investigate the RC4 family of stream ciphers and
show some theoretical weaknesses of such constructions.

Keywords: RC4, VMPC, RC4A, cryptanalysis, linear distinguishing
attack.

1 Introduction

Stream ciphers are very important cryptographic primitives. Many new designs
appear at different conferences and proceedings every year. In 1987, Ron Rivest
from RSA Data Security, Inc. made a design of a byte oriented stream cipher
called RC4 [1]. This cipher found its application in many Internet and security
protocols. The design was kept secret up to 1994, when the alleged specification
of RC4 was leaked for the first time [2]. Since that time many cryptanalysis
attempts were done on RC4 [3, 4, 5, 6, 7].

At FSE 2004, a new stream cipher VMPC [8] was proposed by Bartosz Zoltak,
which appeared to be a modification of the RC4 stream cipher. In cryptanalysis,
a linear distinguishing attack is one of the most common attacks on stream
ciphers. In the paper [8] it was claimed that VMPC is designed especially to
resist distinguishing attacks.

At the same conference, FSE 2004, another cipher RC4A [9] was proposed by
Souradyuti Paul and Bart Preneel. This cipher is another modification of RC4.

In our paper we point out a general theoretical weakness of such ciphers,
which, in some cases, can tell us without additional calculations whether a
new construction is weak against distinguishing attacks. We also investigate
VMPC and RC4A in particular and find two linear distinguishing attacks on
them. VMPC can be distinguished from random using around 254 bytes of the
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keystream, whereas the attack on RC4A needs only 258 bytes. This is the first
paper that proposes attacks on VMPC and RC4A.

This paper is organized as follows. In Section 2 we describe RC4, RC4A, and
the VMPC ciphers. In Section 3 we study digraphs on an instance of VMPC,
and then we demonstrate a theoretical weakness of the RC4 family of stream
ciphers in general. We propose our distinguishers for both VMPC and RC4A in
Sections 4 and 5. Finally, we summarize the results and make our conclusions in
Section 6.

1.1 Notations

The algorithms VMPC, RC4A and RC4 are byte oriented stream ciphers. For
notation purposes we consider VMPC-n, RC4A-n, and RC4-n to be n-bit ori-
ented ciphers, i.e., the originals are when n = 8. Therefore, in the design of these
ciphers, + means addition modulo 2n. For simplicity in formulas, let q be the
size of permuters used in these ciphers, i.e.

q = 2n. (1)

The ciphers have an internal state consisting of one or two permuters of
length q, and a few iterators. The idea of these designs is derived from the RC4
stream cipher, therefore, we call ciphers with a structure similar to RC4 as the
RC4 family of stream ciphers. We denote by Ot the n-bit output symbol at time
t. When a permuter P [·] is applied k times, e.g., P [P [. . . P [x] . . .]], then, for
simplicity, we sometimes denote it as P k[x].

1.2 Preliminaries: A Linear Distinguishing Attack

In a linear distinguishing attack one can observe a keystream of some length
(known plaintext attack), and give an answer: whether the stream comes from
the considered cipher, or from a truly random source. Distinguishers are usually
based on statistical analysis of the given stream. At any point t in the stream
we observe b linear combinations, the joint value of which is called a sample
at time t. If the stream is completely random, then the sample is from the
random distribution denoted as DRandom. If the stream is the keystream from
the considered cipher, then the sample is from the cipher distribution denoted
as DCipher.

To give an answer whether the given stream is from DRandom or DCipher one
has to collect N samples from the stream at different points. These N samples
form an empirical distribution, named also type and denoted as DType. If the
distance from DType to DCipher is less than the distance to DRandom, then we
conclude that the stream is from the cipher, otherwise it is decided to be from
a random source.

The distance between two distributions is given as

δ = |DA −DB| =
∑
all x

|Pr{x|x ∈ DA} − Pr{x|x ∈ DB}|. (2)
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From statistical analysis the following fact is well known. The closer the
distributions DCipher and DRandom are to each other, the larger the number of
samples N should be, in order to distinguish with a negligible probability of
error. The distance ε = |DCipher − DRandom| is then called the bias. The bias
and the number of required samples N , from which we form our type DType,
are related by the formula N = const

ε2 , where the constant influences on the
probability of the decision error. For more details we refer to [10]. However, the
following relation is enough to have a rather negligible probability of error, and
we use this formula in our paper.

N =
1
ε2

(3)

1.3 Cryptanalysis Assumptions

We start our analysis of the RC4 family of stream ciphers by making a few
reasonable assumptions.

(1) We assume that the initialisation procedure is perfect, i.e., all internal vari-
ables (except known iterators) are from the uniform distribution. In practice
this is not true, but we make this assumption as long as we do not investigate
the initialisation procedures;

(2) In our distinguishers we construct a type DType by collecting samples from
the given keystream. Each derived sample at time t is from some local dis-
tribution of the keystream. We assume that at any time the internal state
of a cipher is uniformly distributed and we don’t have any knowledge about
it. This assumption will be used to investigate different local distributions
in the next sections. In our simulations we checked that the internal state
of VMPC is roughly uniformly distributed. But for RC4A the internal state
is not uniformly distributed;

(3) We consider that adjacent samples are independent. In the real life it is not
true, because between two consecutive samples the internal states of a cipher
are dependent. It means that samples might have a strong dependency, which
may influence on the resulting type DType. To reduce these dependencies we
suggest to skip few samples before accept one, then the consecutive adjacent
samples will be much less dependent on each other.

2 Descriptions of VMPC-n, RC4-n, and RC4A-n

The stream cipher RC4-n [1] was designed by Ron Rivest in 1987. It produces
an infinite pseudo-random sequence of n-bit symbols, which is, actually, the
keystream. Encryption is then performed in a typical way for stream ciphers:
Ciphertext = Plaintext ⊕ Keystream. The structure of RC4-n is shown in
Figure 1(left).

The stream cipher VMPC-n [8] was proposed at FSE 2004 by Bartosz
Zoltak. This cipher is also byte oriented (n = 8), and is a generalised version of
RC4-n. The structure of VMPC-n is shown in Figure 1(right).
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Internal variables:
i, j – integers ∈ [0 . . . q − 1]
P [0 . . . q − 1] – a permuter of integers
0 . . . q − 1
The RC4-n cipher
1. P [·] – are initialised with the se-

cret key
i = j = 0

2. Loop until get enough n-bit sym-
bols

| i + +
| j+ = P [b]
| swap(P [i], P [j])
| output ← P [P [i] + P [j]]

Internal variables:
i, j – integers ∈ [0 . . . q − 1]
P [0 . . . q − 1] – a permuter of integers
0 . . . q − 1
The VMPC-n cipher
1. j, P [·] – are initialised with the se-

cret key
i = 0

2. Loop until get enough n-bit sym-
bols

| j = P [j + P [i]]
| output ← P [P [P [j]] + 1]
| swap(P [i], P [j])
| i + +

Internal variables:
i, j1, j2 – integers ∈ [0 . . . q − 1]
P1[0 . . . q − 1], P2[0 . . . q − 1] – two permuters of integers 0 . . . q − 1
The RC4A-n cipher
1. P1[·], P2[·] – are initialised with the secret key

i = j1 = j2 = 0
2. Loop until get enough n-bit symbols

| i + +
| j1+ = P1[i]
| swap(P1[i], P1[j1])
| output ← P2[P1[i] + P1[j1]]
| j2+ = P2[i]
| swap(P2[i], P2[j2])
| output ← P1[P2[i] + P2[j2]]

Fig. 1. The structures of RC4-n (left), VMPC-n (right), and RC4A-n (bottom)
ciphers

The stream cipher RC4A-n[9] was proposed at FSE 2004 by Souradyuti
Paul and Bart Preneel. This cipher is an attempt to hide the correlation be-
tween the internal states and the keystream. The authors suggested to introduce
a second permuter in the design. The structure of RC4A-n is shown in Fig-
ure 1(bottom).

3 Investigation of the RC4 Family of Stream Ciphers

In this section we approximate different local distributions of the accessible
keystream in the RC4 family of stream ciphers, with the assumptions that were
made in Section 1.3. Since in the real cipher the internal state is not from the
uniform distribution, the real local distribution differs from our approximation.



346 A. Maximov

However, in practice we will show that this does not make our distinguishers
worse.

3.1 Digraphs Approach, on the Instance of VMPC-n

In this subsection we give the idea of how a distinguisher for VMPC can be built.
In the previous work [5] the cipher RC4-n was analysed. The authors suggested
to observe two consecutive output symbols Ot, Ot+1, and the known variable
i jointly. For RC4-5 they could calculate theoretical probabilities Pr{(i, Ot =
x,Ot+1 = y)}, for all possible n3 values of the triple (i, x, y) (let us denote such
distribution as D(i,Ot,Ot+1)). But for RC4-8 they could only approximate the
bias for the distribution above due to the high complexity of calculations, and
show that a distinguisher needs around 230.6 samples (the required length of the
plaintext to know).

We use a similar idea to create a distinguisher for VMPC-n. For this purpose
we investigate the pair (Ot, Ot+1) in the following scheme.

i – known value at time t
j, P [·] – are from a random
source

1. Ot = P [P 2[j] + 1]
2. swap(P [i], P [j])
3. j′ = j + P [i + 1]
4. Ot+1 = P [P 3[j′] + 1]

Below we give the explicit algorithm to calculate the approximated distri-
bution table D(i,Ot,Ot+1). For each value i, in each cell of a table T we want
to store an integer number T [i, x, y] of possible pairs (i, P [·]), which cause the
corresponding output pair (Ot = x,Ot+1 = y). It means, that the probability of
any triple (i, Ot, Ot+1) is then calculated as:

Pr{(i, Ot = x,Ot+1 = y)} =
T [i, x, y]

q · q! . (4)

As we can see from the algorithm, its complexity is O(211n) 1. In our sim-
ulations we could manage to calculate the approximation of D(i,Ot,Ot+1) only
for the reduced version VMPC-4. The bias of such table appeared to be around
ε ≈ 2−8.7. It means that we can distinguish VMPC-4 from random having plain-
text of length around 218 4-bits symbols. For notation purposes, let DVMPC−n

(i,Ot,Ot+1)

be the distribution D(i,Ot,Ot+1) for VMPC-n, and similar for DRC4−n
(i,Ot,Ot+1)

.

1 The complexity to construct such a table with a similar algorithm for RC4-n is
O(26n) [5].
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Algorithm 1. Recursive construction of the approximated distribution table
D(i,Ot,Ot+1)

Prepare the permuter: P [i] = ∞ at all positions, i.e., all cells of the permuter
are undefined. In the algorithm the operation define P [i] means that for the
cell i in the permuter P [·] we need to try all possible values 0 . . . (q−1). Note,
we cannot select a value which has been already used in another cell of the
permuter in a previous step. Before making a step back by the recursion,
restore the value P [i] = ∞. In the case when the cell P [i] was already defined
(is not ∞) due to previous steps, then we just go to the next step directly.
Do the following steps recursively:
· for all i = 0 . . . q − 1;
· for all j = 0 . . . q − 1;
· define P [j];
· define P 2[j];
· define P [P 2[j] + 1] ⇒ remember x = P [P 2[j] + 1];
· define P [i];
· swap(P [i], P [j]);
· define P [i + 1] ⇒ calculate j′ = j + P [i + 1];
· define P [j′], then P 2[j′], then P 3[j′];
· define P [P 3[j] + 1] ⇒ remember y = P [P 3[j] + 1];
· T [i, x, y]+ = (q − r)!, where r is the actual number of currently defined

cells in the permuter P [·].

The calculation of a similar distribution table for VMPC-8 meets compu-
tational difficulties, as well as for RC4-8 in [5]. One of the ideas in [5] was to
approximate the biases from small n’s to a larger n, but we decided not to go
this way. Instead, in the next sections we will present only precise theoretical
results on VMPC-8, and on the RC4 family of stream ciphers in general.

3.2 Theoretical Weakness of the RC4 Family of Stream Ciphers

The recursive Algorithm 1 is trivial and slow, but we use it to show the
further theoretical results. We prove that the approximated distribution ta-
ble D(i,Ot,Ot+1) cannot be the uniform distribution when n is larger than some
threshold n0. Moreover, we prove that each probability of the approximated dis-
tribution D(i,Ot,Ot+1) differs from the corresponding probability in the case of
a random source. In other words, the approximated distribution D(i,Ot,Ot+1) is
biased and we find the lower bound of the bias εmin.

Theorem 1. For VMPC-n, where n ≥ 8, under the assumptions made in Sec-
tion 1.3, the following hold.

1. Each probability Pr{(i, Ot = x,Ot+1 = y)} �= 1/q3 (in a random case it should
be 1/q3).
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2. The bias |DRandom −DVMPC−n
(i,Ot,Ot+1)

| is bounded by

q−8n ≤ εmin =
|δmin| · q · (q − 9)!

q!
≤ ε = |DRandom −DVMPC−n

(i,Ot,Ot+1)
|, (5)

where |δmin| is the minimum value, such that

(q − 1)(q − 2) · . . . · (q − 8) + δmin ≡ 0 (mod q).

3. For VMPC-8, we have εmin ≈ 2−56.8.

Proof:
1) Consider Algorithm 1. In the last step the value of r, the number of currently
placed positions in the permuter, can be at most 9. It means that when the algo-
rithm is finished, each cell in DVMPC−n

(i,Ot,Ot+1)
can be written in the form k · (q− 9)!,

for some integer number k.
On the other hand, for a truly random sequence, the probability must be

Pr{(i, Ot, Ot+1)} = 1/q3. From (4) it follows that k·(q−9)!
q·q! must be equal to 1

q3 ,
i.e.,

k must be equal to
q · (q − 1) · . . . · (q − 8)

q2
. (6)

Since k is an integer, then q must divide (q − 1) · . . . · (q − 8). It is easy to show
that starting from n ≥ 8 this is not true.
2) We now try to choose k such that Pr{(i, Ot, Ot+1)} is as close to 1/q3 as
possible. Let |δmin| be the smallest value such that (q − 1) · . . . · (q − 8) + δmin is
divisible by q. Then Pr{(i, Ot, Ot+1)} = 1

q3 ± q·|δmin|·(q−9)!
q3·q! . The minimum value

of |DRandom −DVMPC−n
(i,Ot,Ot+1)

| is then derived as

εmin = q3 · q · |δmin| · (q − 9)!
q3 · q! =

|δmin| · q · (q − 9)!
q!

. (7)

3) for VMPC-8, the minimum δmin is 128. Hence, the lower bound for the bias
is εmin ≈ 2−56.8. ��

For RC4-n a maximum of 6 positions can be fixed, if we use a similar algo-
rithm. Hence, all cells of the distribution table DRC4−n

(i,Ot,Ot+1)
can be written in the

form k · (q − 6)!. By similar arguments as above, we conclude:

Corollary 1. For RC4-n, n ≥ 4, under the assumptions made in Section 1.3,
the following hold.

1. Each probability in DRC4−n
(i,Ot,Ot+1)

�= 1/q3;
2. The minimum value |DRandom −DRC4−n

(i,Ot,Ot+1)
| is bounded by

q−5n ≤ εmin =
|δmin| · q · (q − 6)!

q!
≤ ε = |DRandom −DRC4−n

(i,Ot,Ot+1)
|, (8)
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Fig. 2. Condition: Ot = Ot+1 = 0, i = 0, j = 1. The only case when the condition is
satisfied (left), and one of the cases when it is not (right)

where |δmin| is the minimum value, such that

(q − 1)(q − 2) · . . . · (q − 5) + δmin ≡ 0 (mod q);

3. For RC4-n, n = 4, . . . , 8, we have the following lower bounds.

n=4 n=5 n=6 n=7 n=8
δmin +8 −8 −8 −8 −120
εmin 2−15.46 2−21.28 2−26.65 2−31.83 2−33.01

��
The above theorem shows us the way how one can think when designing a new
cipher from the RC4 family of stream ciphers to avoid these weaknesses. For the
case of VMPC-8, for instance, we can say that the structure seem to be weak in
advance, without deep additional investigations of the cipher.

On the contrary, for RC4A-8 our theorem gave us a very small lower bound,
so that a hypothetical distinguisher would be slower than an exhaustive search. It
means that this cipher would resist distinguishing attacks better than, for exam-
ple, VMPC-8 or RC4-8. Note, these conclusions were made with the assumptions
from Section 1.3. However, in the next sections we investigate digraphs for both
ciphers VMPC-n and RC4A-n in detail.

4 Our Distinguisher for VMPC-n

4.1 What the Probability That Ot = Ot+1 = 0, When i = 0 and
j = 1, Should Be?

If VMPC-n would be a truly random generator, then the answer to the question
of this section would be 1/q2, because when i and j are fixed, then Pr{Ot =

0 1 2

0 1 2

swap(P [i], P [j])

Case 1: P [j] = j

0 = Ot = P [P 2[j] + 1]

Effect: z �= 0, 1

# Permuters = (q − 4)

choose z

· 1

z+1

·(q − 4)!

i j

z

z

j′ = j + P [i + 1] = 1 + z
0 = Ot+1 = P [P 3[j′] + 1]
⇒ P 3[j′] + 1 m.b. = 2
⇒ P [1 + z] m.b. = 2
⇒ Effect: z �= −1, 0, 1, 2

... ...

xy y+1

... ...

xy y+1 0 1

0 1

swap(P [i], P [j])

Case 2: P [j] �= j, i, i − 1

0 = Ot = P [P 2[j] + 1]

# Permuters = 0 (cannot exist)

i j

z

z

j′ = j + P [i + 1] = 1 + z
0 = Ot+1 = P [P 3[j′] + 1]
⇒ P 3[j′] + 1 m.b. = y + 1
⇒ j′ m.b. = y + 1 = z + 1
⇒ y = z – a contradiction!
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0, Ot+1 = 0|i = 0, j = 1,Random source} = 1/q2. In the case of VMPC-n this is
not true. The only case when the desired outputs can be produced is depicted
in Figure 2 (left). All the other permuters will lead to other pairs of outputs
(Ot, Ot+1) �= (0, 0). As an example, in Figure 2 (right) we show one of the cases,
which contradicts the desired conditions.

By this small investigation we have shown that

Pr{Ot =Ot+1 =0|i=0, j =1, VMPC-n}=(q − 4)(q − 4)!

q!
=

q − 4

q(q − 1)(q − 2)(q − 3)
≈1/q3

is significantly smaller compared to Pr{Ot = Ot+1 = 0|i = 0, j = 1,
Random source} = 1/q2. If we now assume that for the other values of j the
probability Pr{Ot = Ot+1 = 0|i = 0, j �= 1,VMPC-n} ≈ 1/q2 – like in a random
case, then we can derive that Pr{Ot = Ot+1 = 0|i = 0} is equal to (1

q ·
1
q3 + q−1

q · 1
q2 )

(in a random case it should be 1/q2). Then, we have a bias ε ≈ 2−3n, and our
hypothetical distinguisher needs to observe the event Ot = Ot+1 = i = 0 from
around 26n samples (27n bytes of the keystream). It means that VMPC-8 can
be distinguished from random having around 256 bytes of keystream. But this
estimated bias is still too rough for VMPC-8, and in the next section we show
how to compute the exact probability Pr{Ot = Ot+1 = 0|i = 0} for VMPC-8.

4.2 Calculating PrOt = Ot+1 = 0|i = 0, When j and P [·] Are
Random

We could calculate the complete distribution table D(i,Ot=x,Ot+1=y) for VMPC-
4, and the bias appeared to be ε ≈ 2−8.7. Unfortunately, we could not apply
Algorithm 1 for VMPC-8, because the complexity is 288 – infeasible for a common
PC. Instead, we propose to consider only two events {Ot = Ot+1 = 0} and
its complement for i = 0. We distinguish between the following two binary
distributions:

DVMPC−n =

(
Pr{Ot = Ot+1 = 0}

1 − Pr{Ot = Ot+1 = 0}
)∣∣∣∣

i=0

. and DRandom =

(
1/q2

1 − 1/q2

)∣∣∣∣
i=0

(9)

Here we give the algorithm to calculate the probability Pr{Ot = Ot+1 = 0|i =
0}. The Algorithm 2 has complexity O(25n), i.e., to calculate Pr{Ot = Ot+1 =
0|i = 0} for VMPC-8 we need to make only 240 operations. After simulation we
got the following result.

Theorem 2. For VMPC-8, under the assumptions made in Section 1.3,

Pr{Ot = Ot+1 = 0|i = 0} =
15938227062862998000

256 · 4096374767995023500000
,

and the bias is ε ≈ 2 · 2−23.98322 ≈ 2−23. I.e., we can distinguish VMPC-8 from
random having around 246 samples, or 28 ·246 = 254 bytes of the keystream, when
the two events from the equation (9) are considered. The cipher and random
distributions are the following,
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DRandom =
(

2−16

1− 2−16

)∣∣∣∣
i=0

, DVMPC−8 =
(

2−16 − 2−23.98

1− 2−16 + 2−23.98

)∣∣∣∣
i=0

. (10)

��

Algorithm 2. Recursive computation of the probability Pr{Ot = Ot+1 =
0|i = 0}
We use the same operation define P [i] as in Algorithm 1.
Do the following steps recursively:
· for all j = 0 . . . q − 1;
· define P [j], then P 2[j];
· Since Ot = 0, then fix the position P [P 2[j] + 1] = 0. If this position is

already defined (�= ∞), and the value is not 0, or pointer to 0 is already
used, then track back by the recursion;

· define P [i = 0];
· swap(P [i], P [j]);
· set P [i + 1] = P [1], if possible, otherwise return by recursion;
· calculate j′ = j + P [i + 1] which is the same as j + P [1];
· Since Ot+1 = 0, and 0 is already placed in the permuter P [·], then we

know the value P 3[j′] + 1, hence, we also know the value P 3[j′] = c.
We can calculate the number of permuters of size q, where P 3[j′] = c,
and r positions are fixed from the previous steps, by the subalgorithm of
complexity O(q), given in Appendix A.

4.3 Simulations of the Attack on VMPC-n

Our theoretical distinguisher from the previous subsection is based on a few
assumptions from Section 1.3. First of all, by simulations we have checked the
distribution of the internal state of VMPC-n for different values of n, and we
did not find any noticeable anomalies. From this we conclude that the internal
state in real is distributed close to the uniform distribution, and our theoretical
distinguisher should work. Secondly, we can argue that the samples are quite
independent. It happens because each sample is connected to the known variable
i, and the distance between two samples (for a fixed i) is q rounds of the internal
loop.

Theorem 2 says that the complexity of the attack on VMPC-8 is O(254), and,
due to such a high complexity, we could not perform simulations of our attack
on this cipher. Instead, we could perform simulations on the reduced version
VMPC-4, and show the attack in practice.

VMPC-4 has one permuter of size 16, and the internal indices i and j
are taken modulo 16. In our simulations we made N = 234 iterations and
from 234 received samples we have constructed the type (empirical distribution)
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with probabilities Pr{Ot = x,Ot+1 = y|i}. Below we show this table (type)
partly.

N = 234 i=0 i=1 . . .
x⇒ 0 1 2 . . . 0 1 2 . . .

To get the probability of the event (Ot = x,Ot+1 = y)|i the cor-
responding cell should be divided by 162. In the case of a random
source each such event has the probability 1/162.

y ⇒ 0 0.92474 0.99866 1.00432 0.99287 0.99086 0.99890
1 1.00085 0.98815 1.01204 0.99309 0.99656 0.99068
2 1.00519 1.00569 1.00343 . . . 0.99496 1.06880 1.06524 . . . . . .
3 1.00631 0.99999 0.99562 1.00080 0.99260 0.99767
...

...
...

...
...

...
...

15 0.99744 0.98926 1.00845 1.00052 0.99124 0.99495

This table represents the type DType and we can see that many probabilities
are far away from 1/162, and the most biased probability is in the cell (0, 0),
which corresponds to Pr{Ot = Ot+1 = 0|i = 0} = 0.924744

162 . When the type (the
table with probabilities) is derived, one can analyze two possible distinguishers
for VMPC-4.

(1) In the first scenario we consider the whole distribution table, i.e., we consider
all events of the form (i, Ot = x,Ot+1 = y). The probability of each event
in this case is 1/163. I.e., each cell of the table (type) should be divided by
1/163.
The bias of the received type is ε0 = 2−8.679648, which is close to the theoret-
ical value calculated in the previous section ε = 2−8.7. However, we could not
calculate a theoretical bias for VMPC-8, therefore, we consider the second
scenario;

(2) In this scenario we observe only two events {Ot = Ot+1 = 0|i = 0, the
others} – as in (9). As we have mentioned, the probability of the event
(Ot = Ot+1 = 0)|i = 0 is much lower than the corresponding probability in
the case of a random source. In this example, the received bias appears to be
ε0 = 2· 1.0−0.924744

162 ≈ 2−10.73205, which, again, is close to the theoretical value
ε = 2−10.755716 (calculated in a similar way as for VMPC-8 in Theorem 2).
For other values of n the simulation results are presented in the following
table.

n=3 n=4 n=5 n=6 n=7 n=8
Theoretical bias, ε 2−7.551 2−10.756 2−13.871 2−16.934 2−19.967 2−22.98

Simulations of the Attack on VMPC-n
Number of rounds made, N0 230 230 230 235 — —

The real bias, ε0 2−7.558 2−10.732 2−13.931 2−16.912 — —
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Our simulations show that the attack on VMPC-n works in practice. We
have also shown that the dependency of the adjacent samples does not influence
much on the type.

5 Our Distinguisher for RC4A-n

5.1 Building a Distinguisher

In this section we investigate the cipher RC4A-n (see Figure 1(bottom)), and
propose our distinguisher for RC4A-8. We again idealize the situation by the pre-
liminary assumptions from Section 1.3, i.e., at any time t the values j1, j2, P1[·],
and P2[·] are considered from the uniform distribution, and unknown for us. We
would like to investigate the following scheme.

i – known value at time t-even
j1, j2, P1[·], P2[·] – are from a random source

1. Ot = P2[P1[i] + P1[j1]]
2. swap(P2[i], P2[j2])
3. Ot+1 = . . .
4. Ot+2 = P2[P1[i + 1] + P1[j1 + P1[i + 1]]]

For cryptanalysis of RC4A-n, we use ideas as before. Our methodology of
finding anomalies for both VMPC-n and RC4A-n was just to consider the dis-
tribution tables like D(i,Ot,Ot+2) for small values of n, using an Algorithm 1-
like procedure. If some anomaly is found then we concentrate on them in
particular for larger values of n, and try to understand why anomalies exist.

For RC4A-n we have noticed that Pr{Ot = Ot+2| i is even} �= 1/q, i.e.,
does not correspond to the random distribution, whereas the other probabili-
ties Pr{Ot �= Ot+2| i is even} are equal to each other, but not equal to 1/q.
From the other hand, all probabilities Pr{Ot = Ot+2| i is odd} = 1/q – cor-
respond to the random distribution. So, our target is to calculate the prob-
abilities Pr{Ot = Ot+2| i is even} for RC4A-8. We have used a similar idea
as in the Algorithm 2, but much simpler. Our optimized search algorithm to
find all such probabilities has complexity O(26n). The result of this work is the
following.

Theorem 3. For RC4A-n,
under the assumptions made in Section 1.3, consider the following vector of

events, and its random distribution,

Events =

⎛⎜⎜⎜⎜⎜⎝
Ot = Ot+2|i = 0
Ot = Ot+2|i = 2

...
Ot = Ot+2|i = q − 2

other cases

⎞⎟⎟⎟⎟⎟⎠ , DRandom =

⎛⎜⎜⎜⎜⎜⎝
1/q2

1/q2

...
1/q2

1− 1/(2q)

⎞⎟⎟⎟⎟⎟⎠ . (11)
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For RC4A-8, the bias DRC4A−8 is ε ≈ 2 · 2−30.05. Hence, our distinguisher needs
around 258 bytes of the keystream. ��

5.2 Checking the Assumptions

By simulations we found that the internal state of RC4A-n is not close to the
uniform distribution. We could clearly see these anomalies running simulations
many times for different n each time sampling from at least N = 230 rounds of
the loop. To begin counting anomalies, we would like to note that the internal
variables j1, P1[·] are updated independently from j2, P2[·] as follows.

One-Round-Update for j∗, P∗[·], where ∗ is 1 or 2
1. i + +;
2. j∗+ = P∗[i]
3. swap(P∗[i], P∗[j∗])

It means that all anomalies found for j1, P1[·] are true for j2, P2[·] as well.
We found an event for which the probability is far from the probability of this

event in the case of a random source. In particular, Pr{j1 = i + 1} ≈ q−1
q2 , when

in the random case it should be 1/q. Other probabilities are Pr{j1|i, j1 �= i+1} ≈
q2−q+1
q2(q−1) . For example, for RC4A-4, it appeared that Pr{j1 = i+1} ≈ 0.05859375,
and the others are Pr{j1|i, j1 �= i} ≈ 0.06276042 – the difference is noticeable.
Some other less notable non-uniformities in the internal state also were found.

5.3 Simulations of the Attack on RC4A-n

Despite finding the non-uniformity of the internal state of RC4A-n we make a
set of simulations to see how our distinguisher behaves itself. We will consider
the attack scenario as in Theorem 3.

n=3 n=4 n=5 n=6 n=7 n=8
Theoretical bias, ε 2−10.014 2−14.005 2−18.001 2−22.00 2−26.00 2−29.05

Simulations of the Attack on RC4A-n
Number of rounds made, N0 230 230 234 240 240 —

The real bias, ε0 2−8.9181 2−12.2703 2−15.073 2−18.042 2−20.025 —

Note that the number of actual samples N0 in our simulations is larger than
1/ε20. From (3) it means that we have distinguished the cipher with a very small
probability of error, and the real theoretical bias without pre-assumptions should
be close to what we get in our simulations. From the table above we see that the
bias in practice (when the internal state is not from the unoform distribution)
is larger than the approximated value of the bias (the uniformly distributed
internal state), for n = 3, . . . , 7. The same behaviour of the distinguisher we
expect for n = 8 as well. Since we could not perform simulations for n = 8, we
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decided to leave theoretical bias as the lower bound of the attack, i.e., ε = 2−29.05

for n = 8, the complexity is O(258). However, in the real life we expect this bias
to be even larger, and complexity of the attack lower.

6 Results and Conclusions

In this paper we have shown some theoretical weaknesses of the RC4 family
of stream ciphers. We have also investigated recently suggested stream ciphers
VMPC-n and RC4A-n, and found linear distinguishing attacks on them. They
are regarded as academic attacks which show weak places in these ciphers. The
summarizing table of our results is below:

Theoretical Our Distinguishers
Cipher Lower Bound for ε, Complexity (# of symbols)

n = 8 n = 3n = 4n = 5n = 6n = 7 n = 8
RC4-n (1987) 2−33 (Corr.1) — — — — — 230.6 (from [5])
VMPC-n (2004) 2−56.8 (Thr.1) 223 ∗ 229 235 241 248 254

RC4A-n (2004) — 218 228 236 244 252 258

The distinguisher for VMPC-8 that we propose is the following 2:

Distinguisher for VMPC-8:

1. Observe N = 254 output bytes. Calculate the
number L of occurences such that a = Ot =
Ot+1 = 0.

2. Calculate two distances:
λRandom = |2−16 − 28 · L/N |
λVMPC = |(2−16 − 2−23.98322) − 28 · L/N |

3. If λRandom > λVMPC then keystream of
VMPC-8, else a random sequence.

If the internal state of a cipher from the RC4 family is uniformly distributed,
then, based on our discussions in Section 3, we conclude that such ciphers are
not very secure. When the internal state is non-uniformly distributed then the
real bias would more likely be larger rather than smaller, and the complexity
of the attack would be lower, in most cases. That effect we could observe on
the example of RC4A-n. It seems that the security level of such constructions

2 The distinguisher for RC4A-8 is in a similar fashion as for VMPC-8.
∗ In the first scenario from Subsection 4.3 the attack complexity for VMPC-4 is O(218).
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depends more on the degree of the recursive relations between output symbols
and internal states, rather than on the length of the permuter(s).

One of the solutions to protect against of such distinguishing attacks is to
increase the number of accesses to the permuter(s) in the loop. This solution will
increase the relation complexity between adjacent outputs. Another solution is
to discard some output symbols before to accept one. Unfortunately, both the
suggestions significantly decrease the speed of these ciphers – the main purpose
of such designs (speed) is then destroyed.
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Appendix A: Subalgorithm for Algorithm 2

Problem statement: We are given a permuter template of size q, where r
positions are already placed, whereas the rest are undefined. We want to calculate
the number of permuters satisfying the given template, such that P 3[j′] = c,
where j′ and c are some known positions in the permuter.

Sub-Algorithm:a

1. Go forward by the path j′ → P [j′] → P 2[j′] → P 3[j′], as much as
possible, but not more then 3 steps. Let g be the point in this path where
we have stopped, and lg be the number of steps we made (from 0 to 3).

2. Go backward by the path c → P−1[c] → P−2[c] → P−3[c], as much as
possible, but not more then 3 steps. Let h be the point in the path where
we have stoped, and lh be the number of steps we made (from 0 to 3).

3. if (lg = 3 and g �= c) or (lh = 3 and h �= j′) then return 0;
if (lg = 3 and g = c) or (lh = 3 and h = j′) then return (q − r)!;
if (lg + lh ≥ 3) return 0;

4. Count the number t1 of positions x �= g, h in the permuter P [·] for which
P [x] = P−1[x] =∞ (see Fig. 3(1)).
Count the number t2 of positions x �= g, h, for which P [x] �= ∞, g, h, and
P−1[x] = P 2[x] = ∞ (see Fig. 3(2)).

5. Now there could be 7 possibilities to connect positions g and h, and they
are depicted in Figure 3(a–g):
a) g = h, lg + lh = 0 ⇒ add (q − r − 1)! combinations;
b) g = h, lg + lh = 0, t1 ≥ 2 ⇒ add t1(t1 − 1)(q − r − 3)! combinations;
c) g = h, lg + lh = 0 ⇒ add t2(q − r − 2)! combinations;
d) g �= h, lg + lh = 2 ⇒ add (q − r − 1)! combinations;
e) g �= h, lg + lh = 1 ⇒ add t1(q − r − 2)! combinations;
f) g �= h, lg + lh = 0, t1 ≥ 2 ⇒ add t1(t1 − 1)(q − r − 3)! combinations;
g) g �= h, lg + lh = 0 ⇒ add t2(q − r − 2)! combinations;

a The complexity of the subalgorithm is O(q)
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Fig. 3. Possibilities to connect g and h, used in subalgorithm
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Abstract. In this paper we introduce the notion of impossible fault anal-
ysis, and present an impossible fault analysis of RC4, whose complexity
221 is smaller than the previously best known attack of Hoch and Shamir
(226), along with an even faster fault analysis of RC4, based on different
ideas, with complexity smaller than 216.

1 Introduction

RC4 is a stream cipher designed by Ron Rivest in 1987, and used by RSADSI in
their products. It was never officially published, but a reverse-engineered copy of
the code appeared anonymously in the sci.crypt newsgroup in 1994. Nowadays,
RC4 is one of the most widely used stream ciphers in a wide range of applications.

Fault analysis was introduced in 1996, when an attack on implementations of
RSA and other public key algorithms was described [3]. Shortly after, differential
fault analysis of secret key cryptosystems such as DES has followed [2]. These
attacks can be made in practice, and various techniques have been described
that induce faults during cryptographic computations [1, 9, 14, 16].

Various observations were made on the design and properties of RC4 since its
publication, e.g., in [5, 6, 7, 10, 12, 13, 15], however till recently no fault analysis
was performed. In a recent paper [8] Hoch and Shamir study fault analytic
attacks against various stream ciphers, including RC4. Their results show that
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Table 1. Summary of the Results for Finding the Initial States

Attack #Faults Data #Rekey Time Space

Hoch and Shamir [8] 216 226 216 226 216

This paper:
Impossible Fault Analysis 216 221 – online (221) 28

Differential Fault Analysis 210 216 210 216 210

the initial state of RC4 can be recovered given 226 bytes of stream with about
216 key setups, and 226 steps of analysis.

In this paper we present the notion of impossible fault analysis, which uses
faults to force the internal state of the stream cipher to become an impossible
state, i.e., a state that can never occur in a regular use of the cipher. We use this
notion to force RC4 to enter impossible states that were first observed by Hal
Finney in [4], and were later described with additional properties in [11]. Once
the internal state falls into Finney’s impossible states, the output stream become
a copy (actually 255 interleaved copies) of the internal state — a phenomena
which is very unexpected. In order to fall to these state we need only 221 bytes
of stream (without any additional key setups), and once we fall into Finney’s
states, the recovery of the internal state is one of the simplest ever described for
any cipher, as the internal state is simply copied into the output stream.

We then describe another, more standard, fault analytic attack against RC4,
which require less than 216 stream bytes with less than a thousand (or a few
thousands) key setups, and whose analysis time complexity is also lower than
216. However, because the assumptions used by the two attacks are different, it
is perhaps not clear which attack would be more efficient in practice.

A summary of our results, and of the previously published results is given in
Table 1.

The paper is organized as follows: In Section 2 we give a short description
of RC4. In Section 3 we describe the notion of impossible fault analysis and the
application to RC4. In Section 4 we describe the best known fault analysis of
RC4, and in Section 5 we summarize the paper.

2 A Brief Description of RC4

For the discussion of this paper it suffices to describe the step function of RC4.
The key setup is very similar, but is not necessary for our analysis.

RC4’s internal state consists of two indices i and j, and an array S of size
256. In a real computation of RC4, this array is always a permutation of all the
values from 0 to 255. The content of the S array is the result of the key schedule,
while i and j are always set to 0 by the key schedule. Each step of RC4 is then
as follows
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i ++
j += S[i]
swap the values of S[i] and S[j]
Output S[S[i] + S[j]]

3 Impossible Fault Analysis of RC4

In [4] Hal Finney presented the following family of internal states of RC4, where

j = i + 1, and S[j] = 1. (1)

He observed that if an internal state is a member of this family at some step,
then all the next and prior states are also in this family, as if the internal state
is in the family, then the value 1 is swapped with the next value, and i and j are
incremented by 1. In his thesis, Itsik Mantin [11] also observes that due to these
swaps, every 255 steps the array S is rotated by one byte, but remains with the
same circular order of byte values, and that every 255 states, the index of the
output byte repeats (as it is just the sum of the two entries pointed by i and j,
i.e., the first repeats every 255 states, and the other is always 1). As a result of
these two observations, the output stream takes the same entry from the array
every 255 output bytes, but the byte values are already rotated, making the new
value of the entry after 255 states being the next value (that was in the next
entry), and any further 255th byte in the output stream being the next value of
the internal state in a cyclic order. We thus receive 255 interleaved streams, each
of them is a copy of the internal state with a (possibly) different starting value.
It is easy to see that once we fall into these states, it is very easy to identify that
we fell into these states, and also very easy to deduce the content of the internal
state (due to an additional property it is even easy to know which is the first
value in the S array, thus to know the exact location of each value in the array,
not only the relative order).

However, the key schedule of RC4 sets i = j = 0 causing these states to
be impossible, thus these states can never appear in real RC4 streams, and we
cannot expect to fall into these states in our analysis.1

Fortunately, for the purposes of this paper, fault analysis can make the im-
possible possible, by modifying the indices i or j, or even the content of the S
array. Therefore, if a fault occurs during the computation of RC4, it may occur
that the resulting internal state becomes a member of this impossible family,
and once the internal state is a member of the family, it is very easy to deduce
the internal state by looking at the output stream.

1 Some RC4 variants with modified key schedule may allow this family of states to
occurs for some fraction (usually about 2−16) of the keys. In such cases, this fraction
of the keys form a class of weak keys, in which the initial state is being copied to
the output stream.



362 E. Biham, L. Granboulan, and P.Q. Nguy˜̂en

For the attack we assume that faults are injected into either register i or
register j at any time the attacker wishes. Once a fault modifies the internal
state to become one of Finney’s states, it is very easy to identify this fact after
several hundred bytes (after two or three bytes from each interleaved cycle are
given, i.e., after a total of about 500 or 700 bytes). However, as we show below,
the identification of non-Finney states can be made much earlier.

We first observe that the probability of falling into Finney’s states by a fault
in i or j is 2−16, because the two equalities defining Finney’s states in Eq. (1)
compare a total of 16 bits, where

1. If the fault is in i, the probability that S[j] = 1 holds is 2−8, and the
probability that the new i is set to j − 1 is also 2−8.

2. If the fault is in j, the probability that S[i + 1] = 1 holds is 2−8, and the
probability that the new j is set to i + 1 is also 2−8.

Therefore, we expect that the internal states will fall to Finney’s states after
about 216 faults are induced.

Once a fault is induced, we would like to identify as soon as possible if the
internal state is a Finney’s state or not. We observe that Finney’s states have
the property that the consecutive (or close) output states fetch the output bytes
from different locations in the S array (because a different value is added to the 1
to form the index of the output byte), and that the array is a permutation of all
the 256 values from 0 to 255. So usually close bytes of the output stream should
be distinct, though, bytes that were swapped already with the prior location in
the array may appear a second time. Therefore, we expect that a collision of
two bytes of the output stream should occur after about 80 bytes of the output
stream, while in the case of non-Finney’s states a collision should occur after
less than 20 bytes due to the birthday paradox (we verified this behavior by a
simulation).2

Based on these observations, we use the following procedure for identifying
whether a state is a Finney’s state or not:

1. For each new output byte check whether the byte value already appeared
since the last fault.

2 A short approximate calculation of the case of Finney’s states is as follows. We
ignore the case where the colliding output byte has value 1, since it is rare, and
affects the result only marginally. Then, (when the output is not 1) a collision of a
byte a states after the fault and another byte b states after the fault can occur only if
S[ia]+S[ja] = S[ib]+S[jb]+1 and ia ≤ S[ia]+S[ja] ≤ ib (in a cyclic manner, where
ix and jx are the values of the registers x states after the fault). The probability
of the first equation to hold is 1/256, while the probability of the second equation
is (b − a)/256. Therefore, under some independence assumptions, the probability
that a collision occurs within the first L bytes after the fault is approximated by∑

0≤a<b<L
(1/256)((b−a)/256) which is about L3/(3·217). By forcing this probability

to be about 1 we get that L ≈ 73, and by forcing it to be about 1/2 we get that
L ≈ 58. We expect that accurate computation will show slightly higher values.
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2. If not, process the next byte (goto step 1).
3. If this byte value already appeared at least once.

Denote the number of bytes since the last fault by n.
(a) If n < 30, the state is most probably not a Finney’s state.
(b) If 30 ≤ n < 40 and this is the second collision, or if 40 ≤ n < 50 and this

is the third collision, (etc., with a few additional similar tests designed
to distinguish between the two cases), then the state is most probably
not a Finney’s state.3

(c) If n > 255, check the relation to the 255th preceding byte, and (unless
one of these two values is 1) verify that they are different, and that no
other earlier pair of this kind appeared with a combination of the first
value with another second value, or the second value with another first
value. If such a pair appeared, the state is not a Finney’s state.

(d) If n > 600, the state is most probably a Finney’s state.
(e) Otherwise, process the next byte (goto step 1).

4. Once the state is identified as either (most probably) a Finney’s state, or
(most probably) not a Finney’s state, the algorithm stops and outputs this
information (for the rest of the attack, we will not distinguish between a
most probable identification or an absolute identification).

The attack is thus as follows: start encryption with RC4 with some un-
known key, and apply the procedure repeatedly, as many times as required, till
a Finney’s state is identified. Each time the procedure identifies a non-Finney’s
state, inject a new fault to either i or j before the next application of the pro-
cedure. Once the procedure identifies a Finney’s state, there are a few options

1. The simplest but slow method is to process extra 255 · 256 bytes, and select
one of the interleaved cycles as the internal state.

2. A much faster method is to use the information we already got about con-
secutive values in the internal state to recover the full state.

3. In both cases the assignment of the cycle to the exact location in the S array
can be done using information obtained at time that the output byte is taken
from either location i or location j (i.e., S[i] + S[j] is either i or j), in which
the outputs are easily identified, e.g., when S[i] + S[j] = i then the output
byte is necessarily 1.

Once the internal state is obtained at some point in time, it is easy to find the
current values of i and j, and then to process the states backwards till the prior
fault. It is also possible to identify the prior value of the faulty register by careful
analysis of the prior bytes of the output stream (i.e., given the internal state, one
of the two registers, and the output byte, it is easy to recover the value of the
other register), thus enabling the attacker to obtain the key-dependent initial
state.

3 Our actual simulation used a slightly different set of thresholds, but for simplicity
of the description we present a rounded version.



364 E. Biham, L. Granboulan, and P.Q. Nguy˜̂en

The attacker can deduce the key from this initial state, e.g., with the tech-
nique described in section A.2 of [11].

We programmed most parts of this attack, and verified that it works and
that the expected number of required bytes of the output stream is about 221

(i.e., the average number of bytes required for recognition of a non-Finney’s
state is not far from 32). In all our tests, our simulation of the attack always
identified Finney’s states correctly, and was not sensitive to whether the faults
were induced in register i or register j (in fact, even if the attacker have no
control on the selection of the register in which the fault is induced, and even if
each fault is induced on one of the registers at random, still the attacker will be
able to recover the initial state without additional complexity).

This attack have various variants: The faults can also be injected to the S
array, but then if the fault is injected at a random location in the array, the
probability to get a Finney’s state is only 2−24 (i.e., i = j − 1 occurs with
probability 2−8, the fault occurs at the new j with probability 2−8, and the
fault modifies this location to a value 1 with probability 2−8). An additional
problem in this case is that the fault change the content of the S array quite
rapidly, making it difficult to follow the changes backwards to the initial state
once a Finney’s state occurs (a solution to this latter problem is to make a new
key setup once in a while, like is made is [8] and in the next section).

Once we make fault in the array, it is possible to replace usage of the value 1
in the attack by two consecutive 2’s in the following way

j = i + 2, and S[j − 1] = S[j] = 2,

or with 3’s

j = i + 3, and S[j − 2] = S[j − 1] = S[j] = 3,

or similarly with larger values. The probability to reach such states is smaller,
but once they appear, the internal state is copied to the output in the same way
as in Finney’s states.

If we assume a stronger fault model than we did, in which the attacker can
induce the faults and select the exact new value of the register (i or j or an
entry of the S array), the attack would be much faster (but then we assume that
there exists an even more efficient attack designed specifically for this stronger
model).

Finally, as in Finney’s states the output stream repeats with known period,
it may be possible to mount a ciphertext only attack where the attacker is given
the ciphertext rather than the output stream. Given a known statistics of the
plaintext (e.g., the knowledge that the plaintext is written in English), these
attacks would required much longer streams for the identification of Finney’s
internal states, but once these states are identified, the combined knowledge on
the statistics of the plaintext’s language and the properties of the internal state
may leak full information on the plaintext and on the initial state (this attack
may be applicable in cases where a smartcard encrypts using RC4 while being
at the possession of the attacker).
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4 A Differential Fault Analysis of RC4

This attack makes use of the fact that each step of RC4 accesses only three bytes
of the S array. In this section we present the main ideas behind this attack, as
there are some delicate cases where a more complicated handling should be
performed, which we will not describe here. We first collect the following data

1. Process a non-faulty stream
(a) Perform a key setup with the unknown key
(b) Run RC4 256 steps, keeping the output stream for later analysis. Call

this output stream R.
2. Process the following 256 times with l being set from 0 to 255, giving 256

output streams of length about 30
(a) Perform a key setup with the unknown key
(b) Make a fault in S[l]
(c) Run RC4 30 steps, keeping the output stream for later analysis. Call this

output stream Ol.
3. Repeat again but with the fault being injected after 30 steps of RC4, calling

the output streams Tl, and keeping longer output streams in the Tl’s.
4. Possibly repeat again with a few additional such sets.

Evidently, the first byte of all the Ol’s, except for three of them, are the
same as in the real stream R. The identification of these three streams leak
the values of i, j, and S[i] + S[j], but not which is which. Evidently, the value
of i is always known, thus it remains only to identify which is j and which is
S[i] + S[j]. We continue doing so for the following bytes of the output streams
(ignoring streams Ol which already had earlier faults). This technique can be
called cascade guessing.

Now, in any location in the stream, whichever of the two values is j, we can
subtract the previous j from the new j and get S[i], then testing whether we
already know that this value appears in another location in the array, allowing
us to discard many wrong cases. Similarly, the other value is S[i] + S[j], and
by knowing the output byte (of the real stream R) we know the content of the
location pointed by this value S[i] + S[j], which also allows us to make a test
for a contradiction. In addition, also S[j] is observed, and can also be tested for
a contradiction. Due to the birthday paradox, we expect to get a contradiction
after an average of less than 20 observed bytes, i.e., after processing about 7
bytes of the output stream. Therefore, the analysis for finding the internal state
should find a considerable number of bytes of the internal state with a small
complexity.

However, as the faults (made before the first step of RC4) become more and
more distant from the analyzed bytes (computed after several steps of RC4), the
identification of the three values become less and less successful, due to earlier
effects of these faults on the streams. This problem have several solutions: one
of them is to have several sets with faults made at different times (like the
Tl’s mentioned above). Another solution is to make a more delicate analysis
and use the faulty streams to recover more information on the key (as the faults
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changed the state slightly, different bytes may be reached from these streams). Or
alternatively, it is possible to allow the algorithm to ignore some unknown values
during the computation, and continue to the next stream byte. A combination of
these methods can recover a large majority of the bytes of the internal state with
a relatively small complexity, after which much simpler analysis can complete
the full content of the internal state.

The complexity of this attack is bounded by 216 using a total of less than 216

stream bytes (with less than a thousand, only a few thousands, key setups).

5 Summary

In this paper we presented two fault attacks on RC4. The first introduces the
notion of impossible fault analysis, and shows how to apply it with complexity
smaller than of previously published fault attacks against RC4. The second at-
tack uses more key setups and analyzes the difference behavior of the key stream
once the internal states is modified due to faults. This later attack is currently
the fastest known fault analysis of RC4.
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Abstract. In this paper we propose a notion of related-key rectangle
attack using 4 related keys. It is based on two consecutive related-key
differentials which are independent of each other. Using this attack we
can break SHACAL-1 with 512-bit keys up to 70 rounds out of 80 rounds
and AES with 192-bit keys up to 8 rounds out of 12 rounds, which are
faster than exhaustive search.

1 Introduction

Differential cryptanalysis [1] introduced by E. Biham and A. Shamir is one of the
most powerful known attacks on block ciphers. After this attack was introduced,
various variants of the attack have been proposed, such as the truncated differ-
ential attack [18], the higher order differential attack [18], the differential-linear
attack [20], the impossible differential attack [3], the boomerang attack [23], the
rectangle attack [4] and so on.

In 1993, E. Biham introduced the related-key attack [2] in which the attacker
can choose the relationship between two unknown keys. It is based on a key
scheduling algorithm and shows that a block cipher with a weak key scheduling
algorithm may be vulnerable to this kind of attack. Several cryptanalytic results
of this attack were reported in [6, 12, 13, 22].

In [10], P. Hawkes showed that the related-key attack can be combined with
the differential-linear attack and that this combined attack can find a relatively
large weak-key class of block cipher IDEA. After this, G. Jakimoski and Y.
Desmedt [11] exploited a combination of the related-key and the impossible dif-
ferential attacks to analyze 8-round AES with 192-bit keys. Recently, J. Kim et
al. [15] introduced a combination of the related-key and the rectangle attacks,
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Table 1. Comparison of our attacks with the previous ones

Block Type of Number of Complexity
Cipher Attack Rounds Data / Time

SHACAL-1 Differential 30(0-29) 2110CP / 275.1[17]
(80 rounds) 41(0-40) 2141CP / 2491[17]

Amplified Boomerang 47(0-46) 2158.5CP / 2508.4[17]

Rectangle 47(0-46) 2151.9CP / 2482.6[5]
49(22-70) 2151.9CP / 2508.5[5]
49(29-77) 2151.9CC / 2508.5[5]

Related-Key Rectangle 57(0-56) 2154.75RK-CP / 2503.38 [15]
59(0-58) 2149.72RK-CP / 2498.30 [15]
70(0-69) 2151.75RK-CP / 2500.08 (New)

AES-192 Square 7(0-6) 232CP / 2184 [21]

(12 rounds) Partial Sums 7(0-6) 19 · 232CP / 2155 [8]
7(0-6) 2128 − 2119CP / 2120[8]
8(0-7) 2128 − 2119CP / 2188[8]

Related-Key Impossible 7(0-6) 2111RK-CP / 2116 [11]
8(0-7) 288RK-CP / 2183 [11]

Related-Key Rectangle 8(0-7) 286.5RK-CP / 286.5 (New)

CP: Chosen Plaintexts, RK-CP: Related-Key Chosen Plaintexts,
CC: Chosen Ciphertexts, Time: Encryption units

called the related-key rectangle attack, in which the attacker can use consec-
utive two differentials; one is a related-key differential and the other one is a
differential.

Until now, a relation of two keys has been considered in almost all attacks
relevant to related-key attacks but in this paper we consider 4 related keys. Our
basic idea is similar to the related-rectangle attack presented in [15] except that
our attack uses 4 related keys. In our attack we use two consecutive related-key
(truncated) differentials which are independent of each other. Our attack allows
us to break SHACAL-1 with 512-bit keys up to 70 rounds out of 80 rounds
and AES with 192-bit keys up to 8 rounds out of 12 rounds. See Table 1 for a
summary of our results and their comparison with the previous attacks.

Our paper is organized as follows. In Sect. 2, we introduce the related-key rect-
angle attack using 4 related keys. Two applications on SHACAL-1 and AES are
presented in Sect. 3 and Sect. 4, respectively. We conclude our paper in Sect. 5.

2 The Related-Key Rectangle Attack

The related-key rectangle attack introduced in [15] is a combination of the
related-key and the rectangle attacks. It exploits two types of related-key rect-
angle distinguishers to retrieve the related keys of the underlying block cipher.
Each of these two types of distinguishers uses two consecutive differentials; one
is a related-key differential and the other one is a differential. However, we can
extend the range of distinguishers by considering two consecutive related-key dif-
ferentials. The distinguishers presented in [15] can be useful in analyzing block
ciphers which have a good related-key differential followed by a good differential,
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or which have a good differential followed by a good related-key differential, while
our distinguishers can be efficiently used in analyzing block ciphers which have
a good related-key differential followed by another good related-key differential.

We now describe two related-key rectangle distinguishers based on two con-
secutive related-key differentials. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher that uses {0, 1}k and {0, 1}n as a key space and a plaintext/ciphertext
space, respectively, and that is composed of a cascade E = E1◦E0, i.e., EK(P ) =
E1

K ◦ E0
K(P ).

A related-key rectangle distinguisher can be formed by building quartets of
plaintexts (Pi, P

∗
i , P ′

j , P
′∗
j ) that satisfy the below four differential conditions.

Assume that Pi, P
∗
i , P ′

j and P ′∗
j are encrypted by using keys K,K∗,K ′ and K ′∗,

respectively, where K,K∗,K ′ and K ′∗ are related to each other. Let Ii, I
∗
i , I ′j

and I ′∗j denote the intermediate encrypted values of Pi, P
∗
i , P ′

j and P ′∗
j under

E0, respectively, and Ci, C
∗
i , C ′

j and C ′∗
j denote the encrypted values of Ii, I

∗
i , I ′j

and I ′∗j under E1, respectively. If the following four differential conditions are
satisfied, we call such a quartet (Pi, P

∗
i , P ′

j , P
′∗
j ) a right quartet.

– Differential Condition 1 : Pi ⊕ P ∗
i = P ′

j ⊕ P ′∗
j = α

– Differential Condition 2 : Ii ⊕ I∗i = I ′j ⊕ I ′∗j = β
– Differential Condition 3 : Ii ⊕ I ′j = γ
– Differential Condition 4 : Ci ⊕ C ′

j = C∗
i ⊕ C ′∗

j = δ

In these four differential conditions, the α and the δ represent specific differences
and the β and the γ represent arbitrary differences. Note that the differential
conditions 2 and 3 allow us to get I∗i ⊕ I ′∗j = γ with probability 1. See Fig. 1 for
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Fig. 1. A Related-Key Rectangle Distinguisher (A Right Quartet)
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a description of such a right quartet. In Fig. 1, we set relations of K,K∗,K ′ and
K ′∗ as follows: K ⊕K∗ = K ′ ⊕K ′∗ = ΔK∗ and K ⊕K ′ = K∗ ⊕K ′∗ = ΔK ′,
where the ΔK∗ and the ΔK ′ represent specific key differences.

When does a right quartet described in Fig. 1 form a distinguisher? In order to
answer this question, we first assume the following two related-key differentials
of the E0 and the E1; for E0 there exists a related-key differential α → β
with probability p∗α,β and for E1 there exists a related-key differential γ → δ

with probability q∗γ,δ. These assumptions mean that p∗α,β = PrX,K [E0
K(X) ⊕

E0
K∗(X∗) = β|X⊕X∗ = α,K⊕K∗ = ΔK∗], q∗γ,δ = PrX,K [E1

K(X)⊕E1
K′(X ′) =

δ|X ⊕X ′ = γ,K ⊕K ′ = ΔK ′].
Assume that we have m1 pairs of (Pi, P

∗
i ) and m2 pairs of (P ′

j , P
′∗
j ) with

difference α. Then about m1 ·p∗α,β and m2 ·p∗α,β pairs satisfy the related-key dif-
ferential α → β for E0. Thus we have about m1 ·m2 · (p∗α,β)2 quartets satisfying
the differential conditions 1 and 2. If we assume that the intermediate encryption
values are distributed uniformly over all possible values, we get Ii⊕I ′j = γ with a
probability 2−n. This assumption enables us to obtain about m1 ·m2 ·2−n ·(p∗α,β)2

quartets satisfying the differential conditions 1, 2 and 3. As stated above, the
differential conditions 2 and 3 allow us to get I∗i ⊕ I ′∗j = γ with probability 1.
Moreover, each of the pairs (Ii, I

′
j) and (I∗i , I ′∗j ) satisfies the related-key differen-

tial γ → δ for E1 with probability q∗γ,δ. Therefore, the expected number of right
quartets is∑

β,γ

m1 ·m2 · 2−n · (p∗α,β)2 · (q∗γ,δ)
2 = m1 ·m2 · 2−n · (p̂∗α)2 · (q̂∗δ )2 ,

where p̂∗α = (
∑

β(p∗α,β)2)
1
2 and q̂∗δ = (

∑
γ(q∗γ,δ)

2)
1
2 .

For a random permutation the expected number of right quartets is m1 ·m2 ·
2−2n, since there are m1 · m2 possible quartets and each of the pairs (Ci, C

′
j)

and (C∗
i , C ′∗

j ) satisfies the δ difference with probability 2−n. Thus, p̂∗α · q̂∗δ >

2−n/2 must hold for the related-key rectangle distinguisher to work. This kind
of distinguisher will be used in attaking 70-round SHACAL with 512-bit keys.

The above related-key rectangle distinguisher can be extended by considering
a number of output differences for E1. That is, we can use a related-key truncated
differential for E1 whose input difference is of γ and output difference is in a set
D �= ∅. q∗γ,D denotes the probability of this related-key truncated differential.
In this case, the expected number of right quartets is∑

β,γ

m1 ·m2 · 2−n · (p∗α,β)2 · (q∗γ,D)2 = m1 ·m2 · 2−n · (p̂∗α)2 · (q̂∗D)2 ,

where q̂∗D = (
∑

γ(q∗γ,D)2)
1
2 . In the case of a random permutation, the expected

number of right quartets is m1 ·m2 · 2−2n · |D|2, since there are m1 ·m2 possible
quartets and each of the pairs (Ci, C

′
j) and (C∗

i , C ′∗
j ) satisfies one of the differ-

ences in a set D with probability 2−n · |D| where |D| is the number of elements
in D. Thus, p̂∗α · q̂∗D > 2−n/2 · |D| must hold for the related-key rectangle dis-
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tinguisher to work. This kind of distinguisher will be used in attacking 8-round
AES with 192-bit keys.

3 Related-Key Rectangle Attack on Reduced Rounds of
SHACAL-1

Firstly, we briefly describe SHACAL-1. Secondly, we describe a 59-round related-
key rectangledistinguisher of SHACAL-1anduse it toattack70-roundSHACAL-1.

3.1 A Description of SHACAL-1

The SHACAL-1 cipher [9] is a 160-bit block cipher based on the compression
function of the hash standard SHA-1 [19]. It consists of 80 rounds and uses a
variable key length up to 512 bits.

A 160-bit plaintext P is composed of five 32-bit words A,B,C,D and E.
Xr denotes the value of 32-bit word X before the r-th round. According to
this notation, the plaintext P is divided into A0,B0,C0,D0 and E0, and the
corresponding ciphertext C is divided into A80,B80,C80,D80 and E80. The r-th
round of encryption is performed as follows:

Ar+1 = Kr + ROTL5(Ar) + fr(Br, Cr, Dr) + Er + Cstr

Br+1 = Ar

Cr+1 = ROTL30(Br)
Dr+1 = Cr

Er+1 = Dr

for r = 0, · · · , 79, where ROTLj(X) represents rotation of the 32-bit word X to
the left over j bits, Kr is the round subkey, Cstr is the round constant, and

fr(Br, Cr, Dr) = (Br&Cr)|(¬Br&Dr), (0 ≤ r ≤ 19)
fr(Br, Cr, Dr) = Br ⊕ Cr ⊕Dr, (20 ≤ r ≤ 39, 60 ≤ r ≤ 79)
fr(Br, Cr, Dr) = (Br&Cr)|(Br&Dr)|(Cr&Dr), (40 ≤ r ≤ 59).

As stated above, SHACAL-1 supports a variable key length up to 512 bits.
However, SHACAL-1 is not intended to be used with a key shorter than 128
bits. In case a shorter key than 512 bits is inserted in the cipher, the key is
padded with zeros to a 512-bit string. Let the 512-bit key string be denoted
K = [K0||K1|| · · · ||K15], where each Ki is a 32-bit word. The key expansion of
512 bits K to 2560 bits is defined by

Ki = ROTL1(Ki−3 ⊕Ki−8 ⊕Ki−14 ⊕Ki−16), (16 ≤ i ≤ 79) .

3.2 Attack on 70-Round SHACAL-1 with 512-Bit Keys

In the key schedule of SHACAL-1, fixing differences of any consecutive 16 round
keys determines differences of the remaining 64 round keys. Indeed the key sched-
ule of SHACAL-1 corresponds to a linear feedback shift register (LFSR) with
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left rotation. Moreover, the key schedule of SHACAL-1 has relatively low dif-
ference propagations. These weaknesses of the key schedule allow us to get two
consecutive good related-key differential characteristics of SHACAL-1. That is,
we can construct a 33-round related-key differential characteristic α → β for
rounds 0-32 (E0) with probability 2−45 (≈ p∗α,β) and a 26-round related-key
differential characteristic γ → δ for rounds 33-58 (E1) with probability 2−25 (≈
q∗γ,δ), where α = (0, e8,22,1, e1,15, e10, e5,31), β = (e1,5,15,30, e10, e3, e30, 0), γ =
(e1,8, 0, e3,6,31, e1,3,31, e3,13,31) and δ = (e1,15, e10, e3, e30, 0). Here, ei denotes a
32-bit word that has 0′s in all bit positions except for bit i and ei1,···,ik

de-
notes ei1 ⊕ · · · ⊕ eik

. These two consecutive related-key differential characteris-
tics are combined to construct our 59-round related-key rectangle distinguisher
of SHACAL-1.

The first 33-round related-key differential characteristic is same as that of [15]
(Sect. 4) except for the condition of plaintext pairs. The 33-round related-key
differential characteristic presented in [15] exploits plaintext pairs for which 6
bits are fixed, while our related-key differential characteristic has plaintext pairs
for which 10 bits are fixed as follows:

a1 = a∗
1 = 1, b3 = b∗3 = 0, b10 = b∗10 = 1, b15 = b∗15 = 0, c8 = c∗8 = 0 ,

c10 = c∗10 = 0, c22 = c∗22 = 0, d8 = d∗8 = 0, d15 = d∗15 = 0, d22 = d∗22 = 0 ,
(1)

where P = (A, · · · , E), P ∗ = (A∗, · · · , E∗) and xi is the i-th bit of 32-bit word
X. This stronger condition increases the probability of [15] by a factor of four.
See Tables 2 and 3 in Appendix A for the details of this related-key differential
characteristic and the associated key differences. As shown in Table 2, the differ-
ence of the master keys is (e31, e31, e31, e31, 0, e31, 0, e31, 0, 0, 0, 0, 0, 0, 0, e31). Let
ΔK∗ denote this difference of the master keys and Δk∗ denote the difference of
keys for rounds 59 ∼ 69 depicted in Table 2. These two notations will be used
in our attack algorithm.

The second 26-round related-key differential characteristic is very similar
to that of [15] (Sect. 5). The related-key differential characteristic presented
in [15] works through rounds 21-47, while our related-key differential charac-
teristic works through rounds 33-58. Since the SHACAL-1 cipher uses a dif-
ferent f function every 20 rounds, the probability of our related-key differ-
ential characteristic is slightly different from that of [15]. See Tables 4 and
5 for the details of this related-key differential characteristic and the associ-
ated key differences. As shown in Table 4, the difference of the master keys
is (0, e31, e31, e30, 0, e29,30,31, e31, 0, e31,e29, 0, e30, 0, e30, e31, e30,31). Let ΔK ′ be
this difference of the master keys and Δk′ be the difference for rounds 59 ∼ 69
depicted in Table 4.

According to [15] we can increase the lower bounds for p̂∗α and q̂∗δ to 2−44.17

and 2−24.08. These lower bounds are derived from taking into account as many
related-key differential characteristics associated with p̂∗α or q̂∗δ as possible. Since
the value p̂∗α ·q̂∗β (≈ 2−68.25) is greater than 2−80, our related-key differential char-
acteristics can form a 59-round related-key rectangle distinguisher of SHACAL-1.

We are now ready to show how to exploit the above 59-round distinguisher
to attack 70-round SHACAL-1. We assume that the 70-round SHACAL-1 cipher
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uses the master key K as well as the related keys K∗,K ′,K ′∗ with differences
K ⊕K∗ = K ′ ⊕K ′∗ = ΔK∗ and K ⊕K ′ = K∗ ⊕K ′∗ = ΔK ′. The following is
an attack procedure for 70-round SHACAL-1.

Input: Two pools of 2149.75 plaintext pairs.
Output: Master key quartet (K,K∗,K ′,K ′∗)

1. Choose two pools of 2149.75 plaintext pairs (Pi, P
∗
i ) and (P ′

j , P
′∗
j ) with the

difference α and 10-bit fixed values of (1). With a chosen plaintext attack,
the Pi, P

∗
i , P ′

j and P ′∗
j are encrypted using the keys K,K∗,K ′ and K ′∗,

respectively, relating in the ciphertexts Ci, C
∗
i , C ′

j and C ′∗
j . We keep all these

ciphertexts in a table.
2. Guess a 352-bit key quartet (k, k∗, k′, k′∗) for rounds 59-69 where k∗ = k ⊕

Δk∗, k′ = k ⊕Δk′ and k′∗ = k∗ ⊕Δk′. For (k, k∗, k′, k′∗) do the following:
2.1 For each i, decrypt Ci and C∗

i through rounds 69-59 using k and k∗,
and denote the decrypted values by Ti and T ∗

i . Let T ′ = Ti ⊕ δ and
T ′∗ = T ∗

i ⊕ δ and encrypt them through rounds 59-69 using k′ and k′∗

and denote the encrypted values by C ′ and C ′∗. Find a j such that
(C ′

j , C
′∗
j ) = (C ′, C ′∗).

2.2 If the number of (i, j) satisfying Step 2.1 is greater than or equal to 6,
go to Step 3. Otherwise, go to Step 2.

3 For the suggested key k, do an exhaustive search for the remaining 160 key
bits using trial encryption. During this procedure, if a 512-bit key satisfies
three known plaintext and ciphertext pairs, output this 512-bit key, denoted
by K, as the master key K of 70-round SHACAL-1. We also output K ⊕
ΔK∗,K ⊕ ΔK ′ and K ⊕ ΔK∗ ⊕ ΔK ′ as the related keys K∗,K ′ and K ′∗.
Otherwise, go to Step 2.

This attack requires two pools of 2149.75 plaintext pairs and thus the data
complexity of this attack is 2151.75 related-key chosen plaintexts. This attack also
requires about 2156.08 (=2151.75 ·20) memory bytes since the memory complexity
of this attack is dominated by Step 1.

We now analyze the time complexity of this attack. The time complexity
of Step 1 is 2151.75 70-round SHACAL-2 encryptions. In Step 2.1, this attack
seeks colliding quartets for all i, j which seems to require a great amount of
time complexity. However, this procedure can be done efficiently by sorting the
ciphertext pairs, (C ′

j , C
′∗
j )’s by C ′

j ’s. Hence the time complexity of Step 2.1 is
dominated by the partial decryption/encryption procedure and thus the time
complexity of Step 2 is about 2500.08 (≈ 2352 ·2151.75 · 1

2 ·
11
70 ) on average. In order

to estimate the time complexity of Step 3 we should check the expected number of
wrong key quartets suggested in Step 2. In Step 2.1, the probability that for each
wrong key quartet there exist at least 6 colliding quartets is about 2−132.49 (≈∑t

i=6

((
t
i

)
· (2−160·2)i · (1− 2−160·2)t−i

)
) where t = 2299.50 and t represents the

number of all possible quartets generated by the two pools of 2149.75 plaintext
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pairs. From the above analysis we expect about 2218.51 (≈ 2352 ·2−132.49 · 12 ) wrong
key quartets on average which are suggested in Step 2 and thus Step 3 requires
about 2378.51 (≈ 2218.51 · 2160) 70-round SHACAL-1 encryptions. Therefore, the
time complexity of this attack is about 2500.08 70-round SHACAL-1 encryptions.

In Step 3, the probability that each 512-bit wrong key is suggested is about
2−480 (≈ 2−160·3). It follows that the expected number of 512-bit wrong keys
which are suggested in Step 3 is about 2−101.49 (= 2−480 · 2378.51). Thus, the
possibility that the output of the above attack algorithm is a wrong key quartet
is very low. Moreover, the expected number of right quartets is about 8 (=
(2149.75)2 · 2−160 · (2−68.25)2) and thus the expected number of colliding quartets
for the right key quartet is about 8. This is due to the fact p̂α · q̂δ ≈ 2−68.25.
Since the probability that for the right key quartet there exist at least 6 colliding
quartets is about 0.80 (≈

∑t
i=6(
(
t
i

)
· (2−160 ·2−68.25·2)i · (1−2−160 ·2−68.25·2)t−i))

where t = 2299.50, the success rate of this attack is about 0.80.

4 Related-Key Rectangle Attack on Reduced Rounds of
AES

Firstly, we briefly describe AES [7]. Secondly, we describe a 7-round related-key
rectangle distinguisher of AES and use it to attack 8-round AES.

4.1 A Description of AES

AES encrypts data blocks of 128 bits with 128, 192 or 256-bit key. A round
function of AES consists of four basic transformations as follows:

– ByteSub (BS): 8× 8 S-box transformation
– ShiftRow (SR): Left rotation of each row
– MixColumn (MC): Matrix multiplication in each column
– AddRoundKey (KA): Key exclusive-or

Each round function of AES applies the BS, SR, MC and KA steps in order,
but the MC is omitted in the last round. Before the first round, an extra KA
step is applied. We call the key used in this step a whitening key. In this paper
we concentrate on the 192-bit key version of the AES which is composed of 12
rounds. For more details of the above four transformations, refer to [7].

The 192-bit key schedule is described in Fig. 2. In Fig. 2, the whitening key
is (W0,W1,W2,W3), the subkey of round 0 is (W4,W5, W6, W7), the subkey of
round 1 is (W8,W9,W10,W11), · · ·, the subkey of round 11 is (W48,W49,W50,
W51), where the 192-bit master key is W0||W1|| · · · ||W5 and Wi is a 32-bit word.
The Rcon denotes fixed constants and the SubByte is a byte-wise S-box trans-
formation and the RotByte represents one byte left rotation.

4.2 Attack on 8-Round AES -192

We describe two related-key truncated differentials on which our 7-round related-
key rectangle distinguisher is based and then we present our related-key rectangle
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192-bit Key

W0 W1 W2 W3

SubByte

Rcon

W7

W8

W6

W4 W5

RotByte

W11

W10

W9

SubByte

Rcon

RotByte

W48 W49 W50 W51

Fig. 2. AES Key schedule(KS) for 192-bit keys

attack on 8-round AES with 192-bit keys. Before describing the two related-key
truncated differentials, we define some notations.

– Kw,K∗
w,K ′

w,K ′∗
w : whitening keys generated from master keys K,K∗,K ′,

K ′∗, respectively.
– Ki,K

∗
i ,K ′

i,K
′∗
i : subkeys of round i generated from master keys K,K∗,K ′,

K ′∗, respectively.
– a: a fixed nonzero byte value.
– b: output difference of S-box for fixed input difference a.
– ∗: a variable and unknown byte.
– ΔK∗,ΔK ′,ΔP ∗,ΔI ′: particular differences described in Figs. 3 and 4.
– ΔT,ΔO: particular difference set described in Fig. 4.
– EK(·): 8-round AES encryption with key K.
– E0

K(·): 4-round AES encryption from round 0 to round 3 with key K but
excluding the exclusive-or with K3.

– E1
K(·): 3-round AES encryption from round 4 to round 6 with key K includ-

ing the exclusive-or with K3

Figs. 3 and 4 show our two related-key truncated differentials with probability
1. If the master key difference is ΔK∗ (resp., ΔK ′), then the subkey difference
in rounds 0-2 (resp., 3-6) is ΔK∗

w,ΔK0,ΔK∗
1 and ΔK∗

2 (resp., ΔK ′
3,ΔK ′

4,ΔK ′
5

and ΔK ′
6) described in Fig. 3 (resp., Fig. 4).

Let K and K∗ be two keys with difference ΔK∗ and P and P ∗ be two plain-
texts with difference ΔP ∗. If the plaintexts P and P ∗ are encrypted under E0

K

and E0
K∗ , respectively, then P and P ∗ satisfy the 4-round related-key truncated
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Fig. 3. The first related-key truncated differential for rounds 0-3 (E0) of AES
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Fig. 4. The second related key truncated differential for rounds 4-6 (E1) of AES

differential, described in Fig. 3. A similar argument can be applied to two keys,
K and K ′, and two intermediate values, I and I ′. Let K and K ′ be two keys with
difference ΔK ′ and P and P ′ be two plaintexts. If E0

K(P )⊕E0
K′(P ′)=ΔI ′, i.e.,

I⊕ I ′ = ΔI ′, then I and I ′ satisfy the 3-round related-key truncated differential
described in Fig. 4. Note that the output difference of this 3-round differential is
one of the elements in ΔT . In Fig. 4, b is an unknown variable which can be one
of 27 − 1 elements since the b is the output difference of the S-box for a given
input difference a, and b′ = 2b⊕ a.

As stated above, these two related-key truncated differentials can form a 7-
round related-key rectangle distinguisher which has a relatively high probability.
In order to compute the probability of this distinguisher we need the following
two assumptions.

Assumption 1. The key quartet (K,K∗,K ′,K ′∗) is related as follows;

K ⊕K∗ = K ′ ⊕K ′∗ = ΔK∗, K ⊕K ′ = K∗ ⊕K ′∗ = ΔK ′ .
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Assumption 2. A plaintext quartet (P, P ∗, P ′, P ′∗) is related as follows;

P ⊕ P ∗ = P ′ ⊕ P ′∗ = ΔP ∗ .

Let I, I∗, I ′ and I ′∗ be E0
K(P ), E0

K∗(P ∗), E0
K′(P ′) and E0

K′∗(P ′∗), respec-
tively. Then the probability that I⊕I∗ is equal to I ′⊕I ′∗ is about (2−32 ·2−7)2 ·
(27−2) ·232 +(2−32 ·2−6)2 ·232 ≈ 2−38.97. It follows from performing a counting
over all the differentials that the active S-box with input difference a and the
other four active S-boxes can produce. Since the ShiftRow and the Mixcolumn
are linear layers, the ShiftRow and the Mixcolumn of the last round can be ig-
nored in computing the probability (See Fig. 3). Moreover the probability that
I ⊕ I ′ = I∗ ⊕ I ′∗= ΔI ′ is 2−128 under the condition that I ⊕ I∗ = I ′ ⊕ I ′∗. So
the probability that

I ⊕ I∗ = I ′ ⊕ I ′∗ and I ⊕ I ′ = I∗ ⊕ I ′∗ = ΔI ′ (2)

is 2−38.97 · 2−128 = 2−166.97. Hence E1
K(I) ⊕ E1

K′(I ′) and E1
K∗(I∗) ⊕ E1

K′∗(I ′∗)
are in the difference set ΔT with probability 2−166.97. But the same statement
can be applied to a random cipher with probability (2−128 · (27 − 1))2 ≈ 2−242.
The quartet (P, P ∗, P ′, P ′∗) satisfying (2) is called a right quartet. Recall that
the number of elements in ΔT is 27 − 1.

Now we are ready to explain our attack. We want to find 5 bytes of each
subkey K7,K

∗
7 ,K ′

7,K
′∗
7 whose byte positions are marked as ∗ on ΔO depicted

in Fig. 4. Since the keys K,K∗,K ′ and K ′∗ are related, the number of possible
key quartets is 240 · (27−1) ·216 ≈ 263 rather than (240)4. In order to understand
the relations of the round keys of round 7 refer to Fig. 5. In Fig. 5, b is an
output difference of S-box for fixed input difference a which can be one of 27− 1
elements and c and d are unknown varibles.

The basic idea of our attack is simple. Let (P, P ∗, P ′, P ′∗) be right quartet and
(C,C∗, C ′, C ′∗) be the corresponding ciphertext quartet. Define Dk(·) as a partial
one round decryption with k, where k is a 5-byte key candidate of round 7. Then
we guess a 5-byte key quartet (k, k∗, k′, k′∗) and check that Dk(C)⊕Dk′(C ′) ∈

b b
a

d d d d
c c

a a

a a

a a

a a

K

*K

'K

*'K

KS
KS

7K

7
*K

7'K

7
*'K

a a a a

a a a a

b b
a

d d d d
c c

Fig. 5. Differential Property of 4 related keys for rounds 0-7 of AES
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ΔT 5 and Dk∗(C∗) ⊕ Dk′∗(C ′∗) ∈ ΔT 5 where ΔT 5 is a set described in Fig.
4. If the number of ciphertext quartets passing the above test is more than an
appropriate threshold, we consider the guessed key quartet as the right one.

Input: Two pools of 284.5 plaintext pairs.
Output: 5-byte key quartet of round 7.

1. Choose 284.5 plaintext pairs (Pi, P
∗
i ) and 284.5 plaintext pairs (P ′

j , P
′∗
j ) with

Pi⊕P ∗
i = P ′

j ⊕P ′∗
j = ΔP ∗. With a chosen plaintext attack, the Pi, P

∗
i , P ′

j ,
P ′∗

j are encrypted using the keys K,K∗,K ′ and K ′∗, respectively, relating in
the ciphertexts Ci, C

∗
i , C ′

j and C ′∗
j . We keep all these ciphertexts in a table.

2. Check that Ci ⊕ C ′
j ∈ ΔO and C∗

i ⊕ C ′∗
j ∈ ΔO for all i, j.

3. Guess a 5-byte key quartet (k, k∗, k′, k′∗) for round 7.
3.1 For all ciphertext quartets (Ci, C

∗
i , C ′

j , C
′∗
j ) passing the test of Step 2,

check that Dk(Ci)⊕Dk′(C ′
j) ∈ ΔT 5 and Dk∗(C∗

i )⊕Dk′∗(C ′∗
j ) ∈ ΔT 5.

3.2 If the number of quartets (Ci, C
∗
i , C ′

j , C
′∗
j ) passing Step 3.1 is greater

than or equal to 3, output the guessed key quartet (k, k∗, k′, k′∗) as the
right key quartet of round 7. Otherwise, go to Step 3.

This attack requires two pools of 284.5 plaintext pairs and thus the data
complexity of this attack is 286.5 related-key chosen plaintexts. This attack also
requires about 290.83 (= 286.5 · 20) memory bytes since the memory complexity
of this attack is dominated by Step 1.

From the two pools of 284.5 plaintext pairs we can make 2169 plaintext quar-
tets. Step 2 requires 284.5 searches of 284.5 ciphertext pairs. This procedure can
be done efficiently by sorting the ciphertext pairs, (C ′

j , C
′∗
j )’s by C ′

j ’s. In Step 2,
by assuming that the intermediate encryption values are distributed uniformly
over all possible values we get Ci⊕C ′

j ∈ ΔO and C∗
i ⊕C ′∗

j ∈ ΔO with probability
2−176 (= 2−11·8·2) for a wrong quartet (Ci, C

∗
i , C ′

j , C
′∗
j ). This probability follows

from the fact that all elements of ΔO have a identically fixed value in 11 bytes.
However, the difference set ΔO is induced by the difference set ΔT and the prob-
ability that each ciphertext quartet passes the test of Step 2 is same as that of our
7-round related-key rectangle distinguisher. Hence, the expected number of ci-
phertext quartets passing the test of Step 2 is about 2169 ·(2−166.97+2−176) ≈ 22.
Using this expected number we can estimate the time complexity of Step 3, i.e.,
Step 3 requires about 263 (= 263 · 22 · 22 · 1

8 ·
1
2 ) 8-round AES encryptions on

average. Hence, the time complexity of this attack is dominated by Step 1 and
thus this attack requires about 286.5 8-round AES encryptions.

For each wrong key quartet and each ciphertext quartet, the probability of
passing the test of Step 3.1 is at most 2−6. Note that the largest number in
DC table of S-box used in AES is 4. This probability may occur when two of
k, k∗, k′, k′∗ are correct and each of the rest two of them is correct except for
one byte. In this case the probability that Step 3 outputs the guessed wrong key
quartet is at most (2−6)3. Since the number of these kinds of wrong key quartets
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is at most 2 · 5 · (28 − 1), the probability that Step 3 outputs such a wrong key
quartet is at most 0.01. In this manner we can check all cases for wrong key
quartets. For each of all other cases the probability that Step 3 outputs a wrong
key quartet is much less than 0.01 and thus the probability that this attack
outputs a wrong key quartet is approximately 0.01. Since the probability that
for the right key quartet there exist at least 3 quartets passing the test of Step
3.1 is about 0.77 (≈

∑2169

i=3

(
2169

i

)
(2−166.97)i(1− 2−166.97)2

169−i), the success rate
of this attack is about 0.76 (≈ 0.77 · (1− 0.01)).

5 Conclusion

In this paper we proposed a new notion of related-key rectangle attack using 4
related keys and showed that it could break SHACAL-1 with 512-bit keys up to
70 rounds out of 80 rounds and AES with 192-bit keys up to 8 rounds out of 12
rounds. It is worthwhile to apply this attack to other block ciphers and to study
simple key scheduling algorithms which may be resistant to this kind of attack.
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A The First Related-Key Differential Characteristic and
the Associated Key Differences of SHACAL-1

Table 2. Key Differences Used in the First Related-Key Differential Characteristic

i ΔK∗
i i ΔK∗

i i ΔK∗
i i ΔK∗

i i ΔK∗
i i ΔK∗

i i ΔK∗
i

0 e31 10 0 20 0 30 0 40 e3 50 e3,7 60 e3,7

1 e31 11 0 21 0 31 e0 41 e4 51 e5 61 e2,4,7,9,10

2 e31 12 0 22 0 32 e1 42 0 52 e7 62 e3,7,11

3 e31 13 0 23 0 33 0 43 e1,3,4 53 e8 63 e2,3,4,9

4 0 14 0 24 0 34 e1 44 e5 54 0 64 e3,5,11

5 e31 15 e31 25 0 35 e2 45 e2,3 55 e3,5,7,8 65 e3,12

6 0 16 0 26 0 36 0 46 e5 56 e9 66 e3,5

7 e31 17 0 27 0 37 e2,3 47 e1,2,6 57 e2,5,6 67 e3,5,6,9,11,12

8 0 18 0 28 0 38 e3 48 e31 58 e9 68 e13

9 0 19 0 29 e0 39 e1 49 e3,5,6 59 e2,3,5,6,10 69 e3,5,9,10
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Table 3. The First Related-Key Differential Characteristic

Round (i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔK∗
i Prob.

0 0 e8,22,1 e1,15 e10 e5,31 e31

1 e5 0 e6,20,31 e1,15 e10 e31 2−2

2 0 e5 0 e6,20,31 e1,15 e31 2−5

3 e1,15 0 e3 0 e6,20,31 e31 2−6

4 0 e1,15 0 e3 0 0 2−3

5 0 0 e13,31 0 e3 e31 2−3

6 e3 0 0 e13,31 0 0 2−3

7 e8 e3 0 0 e13,31 e31 2−3

8 0 e8 e1 0 0 0 2−2

9 0 0 e6 e1 0 0 2−2

10 0 0 0 e6 e1 0 2−2

11 e1 0 0 0 e6 0 2−2

12 0 e1 0 0 0 0 2−1

13 0 0 e31 0 0 0 2−1

14 0 0 0 e31 0 0 2−1

15 0 0 0 0 e31 e31 2−1

16 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...

28 0 0 0 0 0 0 1

29 0 0 0 0 0 e0 1

30 e0 0 0 0 0 0 2−1

31 e5 e0 0 0 0 e0 2−1

32 e10 e5 e30 0 0 e1 2−2

33 e1,5,15,30 e10 e3 e30 0 2−4

B The Second Related-Key Differential Characteristic
and the Associated Key Differences of SHACAL-1

Table 4. Key Differences Used in the Second Related-Key Differential Characteristic

i ΔK′
i i ΔK′

i i ΔK′
i i ΔK′

i i ΔK′
i i ΔK′

i i ΔK′
i

0 0 10 0 20 e31 30 0 40 0 50 0 60 e1

1 e31 11 e30 21 e30 31 e31 41 e31 51 0 61 e2

2 e31 12 0 22 e31 32 0 42 0 52 0 62 0
3 e30 13 e30 23 e30,31 33 e31 43 0 53 0 63 e2,3

4 0 14 e31 24 e31 34 0 44 0 54 0 64 e3

5 e29,30,31 15 e30,31 25 e30 35 0 45 0 55 e0 65 e1

6 e31 16 e31 26 e31 36 0 46 0 56 0 66 e3

7 0 17 e30,31 27 e31 37 0 47 0 57 e0 67 e4

8 e31 18 e31 28 e31 38 0 48 0 58 e1 68 0
9 e29 19 e30,31 29 e31 39 0 49 0 59 0 69 e1,3,4
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Table 5. The Second Related-Key Differential Characteristic

Round (i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔK′
i Prob.

33 e1,8 0 e3,6,31 e1,3,31 e3,13,31 e31

34 e1,3 e1,8 0 e3,6,31 e1,3,31 0 2−4

35 0 e1,3 e6,31 0 e3,6,31 0 2−4

36 e1 0 e1,31 e6,31 0 0 2−3

37 e1 e1 0 e1,31 e6,31 0 2−2

38 0 e1 e31 0 e1,31 0 2−1

39 0 0 e31 e31 0 0 2−1

40 0 0 0 e31 e31 0 1

41 0 0 0 0 e31 e31 2−1

42 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...

54 0 0 0 0 0 0 1

55 0 0 0 0 0 e0 1

56 e0 0 0 0 0 0 2−1

57 e5 e0 0 0 0 e0 2−1

58 e10 e5 e30 0 0 e1 2−3

59 e1,15 e10 e3 e30 0 2−4
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Abstract. In this paper, we describe a sequence of simple, yet efficient
chosen-plaintext (or chosen-ciphertext) attacks against reduced-round
versions of IDEA (with 2, 2.5, 3, 3.5, and 4 rounds) which compare
favourably with the best known attacks: some of them decrease consider-
ably the time complexity given the same order of data at disposal while
other ones decrease the amount of necessary known- or chosen-plaintext
pairs under comparable time complexities. Additionally, we show how
to trade time and memory for some of the known-plaintext attacks of
Nakahara et al.
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1 Introduction

Although the IDEA block cipher [11, 12, 10] is one of the oldest proposals of
alternative to DES [18], it has withstood all kinds of cryptanalytical attacks sur-
prinsingly well until now. Its strength is certainly due to an elegant and simple
design approach which consists in mixing three algebraically incompatible group
operations, namely the addition of vectors over GF (2)16, denoted “⊕”, the addi-
tion of integers over Z216 , denoted “�”, and the multiplication in GF

(
216 + 1

)∗,
denoted “,”. Despite the popularity of IDEA (due surely to the fact that it
was chosen as the block cipher in the first versions of the software Pretty Good
Privacy (PGP) [7] by Zimmerman), its cryptanalysis process has been a rather
lengthy process. To the best of our knowldege, Meier [14] was the first to propose
an attack based on differential cryptanalysis against up to 2.5 rounds running
faster than an exhaustive search. Then, Borst et al. [3] presented a differential-
linear attack against 3 rounds and a truncated differential attack on 3.5 rounds;
Biham et al. [1] managed to break 4.5 rounds using impossible differentials. Mo-
tivated by a paper of Nakahara et al. [15] explaining how to break 2.5 rounds
using an integral attack, Demirci [5] was able to break up to 4 rounds; one
year later, these results were extended [6] using meet-in-the-middle techniques
to break up to 5 rounds slightly faster than an exhaustive search. Very recently,
Nakahara et al. [16] devised known-plaintext attacks against reduced-round ver-
sions of IDEA using ideas of Demirci as well as an (unpublished) observation of

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 384–397, 2005.
c© International Association for Cryptologic Research 2005
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Biryukov. Other papers [4,8,2] present attacks against the full version of IDEA,
but these attacks fortunately work only for a negligible fraction of the keys.

Contributions of this paper: Inspired by some of the ideas in the paper of
Nakahara et al. [16], we describe a sequence of new attacks against reduced-round
versions of IDEA, up to 4 rounds; these attacks are mainly based on the Biryukov-
Demirci relation. Some of them, given a comparable computational complexity,
reduce considerably the amount of necessary chosen plaintexts, while other at-
tacks, given a comparable amount of chosen plaintexts, decrease favourably the
computational complexity; additionaly, we show how to trade time and mem-
ory for some of the known-plaintext attacks of Nakahara et al. Furthermore, we
explain how to combine some of these attacks with other known attacks, which
allows in some cases to gain more key bits with a lesser complexity, or to avoid
the use of both encryption and decryption oracles. This paper is organized as
follows: we recall briefly in §2 the inner details of IDEA, and the attacks are
described in §3. Finally, we compare our results to the best known attacks in §4.

2 The IDEA Block Cipher

IDEA encrypts 64-bit data blocks under a 128-bit key; it consists of eight iden-
tical rounds and a final half-round (a key addition layer similar to those in a
full round). Figure 1 illustrates the computational flow of one round. Round r
transforms a 64-bit input represented as a vector of four 16-bit words to an out-
put vector of the same size: (X(r)

1 , X
(r)
2 , X

(r)
3 , X

(r)
4 ) �→ (Y (r)

1 , Y
(r)
2 , Y

(r)
3 , Y

(r)
4 ).

This process is parametered by six 16-bit subkeys denoted Z
(r)
i , with 1 ≤ i ≤ 6,

which are derived from the master 128-bit key by means of the key-schedule
algorithm. One evaluates the three IDEA algebraic operations as follows: ⊕ is a
simple exclusive-or operation, � is the addition modulo 216 and , is the common
multiplication modulo 216 + 1 (where 0 is considered as the number 216). First,
two intermediate values α(r) and β(r) are computed:

α(r) =
(
X

(r)
1 , Z

(r)
1

)
⊕
(
X

(r)
3 � Z

(r)
3

)
β(r) =

(
X

(r)
2 � Z

(r)
2

)
⊕
(
X

(r)
4 , Z

(r)
4

)
These two values form the input of the multiplication-addition box (MA-box)
which provides two 16-bit outputs γ(r) and δ(r):

δ(r) =
((

α(r) , Z
(r)
5

)
� β(r)
)
, Z

(r)
6

γ(r) =
(
α(r) , Z

(r)
5

)
� δ(r)

Finally, the output of the round r is given by

Y
(r)
1 =
(
X

(r)
1 , Z

(r)
1

)
⊕ δ(r) , Y

(r)
2 =
(
X

(r)
2 � Z

(r)
2

)
⊕ γ(r)

Y
(r)
3 =
(
X

(r)
3 � Z

(r)
3

)
⊕ δ(r) , Y

(r)
4 =
(
X

(r)
4 , Z

(r)
4

)
⊕ γ(r)
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(r)
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Fig. 1. Round r of IDEA

A half-round is defined to be the key-addition layer; we denote its output
(C(r)

1 , C
(r)
2 , C

(r)
3 , C

(r)
4 ) . The key-schedule of IDEA allows to derive fifty-two 16-

bit subkeys out of the 128-bit key Z. Its description is straightforward; first,
order the subkeys as

Z
(1)
1 , . . . , Z

(1)
6 , Z

(2)
1 , . . . , Z

(2)
6 , . . . , Z

(9)
1 , . . . , Z

(9)
4

partition Z into eight 16-bit blocks, and assign these blocks directly to the first
eight subkeys. Then, do the following until all remaining subkeys are assigned:
rotate Z left 25 bits, partition the result, and assign these blocks to the next
eight subkeys. In Figure 2, we give explicitely the value of the subkeys (where
Z[0...15] means the bits 0 to 15 (inclusive) of Z, Z[117...4] means the bits 117-127
and 0-4 of Z, and where the leftmost bit of Z is numbered with 0).

3 Description of the Attacks

In this section, we describe new attacks breaking 2-rounds, 2.5-rounds, 3-rounds,
3.5-rounds, and 4-rounds IDEA, and we compute their complexity. But first of
all, we recall what is the Biryukov-Demirci relation, as it builds the core of our
distinguishers.
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Round r Z
(r)
1 Z

(r)
2 Z

(r)
3 Z

(r)
4 Z

(r)
5 Z

(r)
6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

8.5 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

Fig. 2. Complete Key-Schedule of IDEA

3.1 The Biryukov-Demirci Relation

A crucial observation on which our attacks is based is that there exists a linear-
like expression holding with probability one on any number of rounds. Nakahara
et al. [17] name it Biryukov-Demirci relation. It is actually a combination of two
facts, one of these being the following observation by Demirci [5].

Lemma 1 (Demirci [5]). For any round number r of the IDEA block cipher,

lsb
(
γ(r) ⊕ δ(r)

)
= lsb
(
α(r) , Z

(r)
5

)
(1)

where lsb(a) denotes the least significant (rightmost) bit of a.

Using this theorem, one can easily set up a distinguisher using a few known
triplets (α(r), γ(r), δ(r)) which works as follows: for each possible value of Z

(r)
5 ,

check whether Eq. (1) hold for the known triplets; this allows to sieve wrong
values of Z

(r)
5 from the right one. Actually, one gets two candidates for Z

(r)
5 ,

as observed by Demirci: if Z
(r)
5 /∈ {0, 1}, this distinguisher eliminates all keys

except the correct one and a “conjugate” 216 +1−Z
(r)
5 . Otherwise, it eliminates

all keys except 0 and 1.
The second (unpublished) observation1 states that the two middle words in a

block of data are only combined either with subkeys or with internal cipher data,
via group operations (namely ⊕ and �) which are GF(2)-linear when considering
their least significant (rightmost) bit; this fact is valid across the full cipher (and
is actually independent of the number of rounds). Combining this observation
and Lemma 1, one easily obtain the Biryukov-Demirci relation.

Theorem 1 (Biryukov-Demirci relation). For any number of rounds n in
the IDEA block cipher, the following expression is true with probability one:

1 According to [17], this observation is credited to Biryukov.
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lsb

(
n⊕

i=1

(
γ(i) ⊕ δ(i)

)
⊕X

(1)
2 ⊕X

(1)
3 ⊕ Y

(n+1)
2 ⊕ Y

(n+1)
3

)
=

lsb

⎛⎝ n⊕
j=1

(
Z

(j)
2 ⊕ Z

(j)
3

)⎞⎠
Note that Theorem 1 can easily be extended when a final half-round (key-
addition layer) is present by adding the two relevant key bits.

3.2 Retrieving All Key Bits for 1.5 Rounds

The simplest attack described in [17] is built on top of the following expression
holding with probability one; it is a straightforward application of Theorem 1 to
1.5-rounds IDEA.

lsb
(
X

(1)
2 ⊕X

(1)
3 ⊕ C

(2)
2 ⊕ C

(2)
3 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕

Z
(1)
5 ,
((

X
(1)
1 , Z

(1)
1

)
⊕
(
X

(1)
3 � Z

(1)
3

)))
= 0 (2)

By taking into account the key-schedule algorithm and guessing key bits num-
bered (see Figure 2) 0-15, 32-47, 64-79, which represent 48 unknown key bits,
one can recover these right key bits and lsb

(
Z

(1)
2 ⊕ Z

(2)
2

)
with probability larger

than 0.99 in roughly 3 · 12
30 ·248 ≈ 248.26 1.5-rounds IDEA evaluations if 55 known

plaintext-ciphertext pairs are available using Alg. 1.. The complexity of this

Algorithm 1. Attack breaking 1.5-round IDEA
1: Input: An oracle Ω implementing encryption by 1.5-rounds IDEA under a fixed,

unknown key.
2: Query the ciphertexts corresponding to 55 different, uniformly distributed plain-

texts Pi to Ω.
3: for all possible subkey candidates (Z

(1)
1 , Z

(1)
3 , Z

(1)
5 ) do

4: Check whether the expression

lsb
(
X

(1)
2 ⊕ X

(1)
3 ⊕ C

(2)
2 ⊕ C

(2)
3 ⊕

Z
(1)
5 �
((

X
(1)
1 � Z

(1)
1

)
⊕
(
X

(1)
3 � Z

(1)
3

)))
(3)

gives the same bit for the two first pairs. If yes, take sequentially other pairs as
long as Eq. (3) evaluates to a constant. If it holds for all 55 pairs, output “Key
candidate”.

5: end for

attack can be evaluated as follows: for each key candidate, one needs to evalu-
ate Eq. (3) at least two times, three times with probability 1

4 , four times with
probability 1

8 , and so on, which results in an average of three evaluations of
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Eq. (3); as in [17], we assume furthermore that a , operation is equivalent to
three ⊕ (or three �) operations: thus, one evaluation of Eq. (3) costs 12 simple
operations while a full evaluation of 1.5-round IDEA costs 30 simple operations.
Note that we may have adopted the strategy of [17], which consists in guessing
lsb
(
Z

(1)
2 ⊕ Z

(2)
2

)
as well and evaluating Eq. (2). In this case, one would need one

pair of known plaintext-ciphertext more to ensure the same success probability,
and the complexity would have been equal to 2 · 1430 ·249 ≈ 248.90, which is slightly
worse.

We observe that one can actually apply a common trick2 to the Biryukov-
Demirci relation and thus extend Nakahara et al. attack: we can apply the rela-
tion in two directions, namely in the encryption or in the decryption direction.
When applied to the decryption direction, the distinguisher Eq. (2) becomes

lsb
(
X

(1)
2 ⊕X

(1)
3 ⊕ C

(2)
2 ⊕ C

(2)
3 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(2)
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(2)
3 ⊕

Z
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5 ,
((

C
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1 , Z

(2)
1

)
⊕
(
C

(2)
2 � Z

(2)
2

)))
= 0 (4)

Although it would not be more interesting to use Eq. (4) alone as distinguisher
(since one should guess the same number of unknown key bits), one can use it
after Eq. (2) to recover all key bits using roughly the same amount of compu-
tational effort. More precisely, once the key bits 0-15, 32-47, 64-79 are known,
which actually fix Z

(1)
1 and Z

(1)
5 , one can recover Z

(2)
1 and Z

(2)
2 (key bits num-

bered 96-127) in a 3 · 12
30 · 232 ≈ 232.26 effort, derive the key bit 31, and search

exhaustively for the remaining 47 unknown key bits. The overall complexity of
this attack is approximately equal to 248.26 + 247 + 232.26 ≈ 248.76 1.5-round
IDEA evaluations.

3.3 A New Chosen-Plaintext Attack Breaking 2 Rounds

Let us consider the relation Eq. (2) on 2 rounds, and let us fix X
(1)
1 and X

(1)
3

to arbitrary constants3. Our attack proceeds as follows and assumes that the
adversary is able to encrypt about 62 chosen plaintexts: as first step, encrypt
23 chosen plaintexts with fixed X

(1)
1 and X

(1)
3 , and guess Z

(2)
5 . In a second step,

guess Z
(2)
6 and test Eq. (2) on the partially decrypted ciphertext, and determine

these unknown key bits with help of Eq. (2) by eliminating the candidates which
do not render this expression constant, since the expression

lsb
(
Z

(1)
5 ,
((

X
(1)
1 , Z

(1)
1

)
⊕
(
X

(1)
3 � Z

(1)
3

)))
2 This trick was proposed for the first time, as far as this author knows, by Matsui [13]

in the linear cryptanalysis of DES.
3 A similar technique was used by Knudsen and Mathiassen [9] to speed up by a small

constant a linear cryptanalysis of DES.
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provides an unknown, but constant bit to the cryptanalyst. This process gives us
4 candidates for the key bits 57-88 within a complexity of less than 220 2-rounds
IDEA evaluations.

Once this process is achieved, one can use the attacks described in §3.2 to
derive key bits 0-15 and 32-47 in a 233 effort and key bits 96-127 in another 233

effort with 39 additional chosen-plaintext. Hence, this attacks recovers all key
bits (the 31 remaining ones with help of an exhaustive search) in a computa-
tional complexity approximately equal to 234 2-rounds IDEA evaluations. Thus,
this attack compares quite favorably with Demirci’s square-like attack [5] which
requires roughly the same order of chosen-plaintexts and a 264 computational
effort to recover the whole key.

If a decryption oracle is available, instead of an encryption one, we can still
mount a chosen-ciphertext attack based on the same properties. It would work
as follows: fix Y

(2)
1 and Y

(2)
3 to an arbitrary constant, and guess Z

(1)
1 , Z

(1)
3 , and

Z
(1)
5 (which represent 48 unknown key bits numbered 0-15, 32-47, and 64-79).

Once these 48 bits recovered, after a 248 process (provided 55 chosen plaintexts
are available), one can recover 16 more bits (i.e. the still unknown bits of Z

(2)
5

and Z
(2)
6 in a second step, and 32 more (numbered 96-127 and corresponding to

subkeys Z
(2)
1 and Z

(2)
2 ) in a third step; finally, the remaining ones can be found

with help of an exhaustive search.

3.4 A New Chosen-Plaintext Attack Breaking 2.5, 3, and 3.5
Rounds

If we apply the Demirci-Biryukov relation to 2.5-rounds IDEA, then one gets the
following expression:

lsb

(
X

(1)
2 ⊕X

(1)
3 ⊕ C

(3)
2 ⊕ C

(3)
3 ⊕

3⊕
i=1

(
Z

(i)
2 ⊕ Z

(i)
3

))
⊕

lsb
(
Z

(1)
5 ,
((

X
(1)
1 , Z

(1)
1

)
⊕
(
X

(1)
3 � Z

(1)
3

)))
⊕

lsb
(
Z

(2)
5 ,
((

C
(3)
1 , Z1

(3)
)
⊕
(
C

(3)
2 � Z

(3)
2

)))
= 0 (5)

where Z1
(3)

denotes the inverse of Z
(3)
1 relatively to the group operation ,. If

we use the same trick than for 2 rounds and fix X
(1)
1 and X

(1)
3 , an adversary

can recover Z
(2)
5 , Z1

(3)
and Z

(3)
2 (key bits 57-72 and 89-120) in a 248 effort if

55 chosen-plaintexts are available (the success probability is then larger than
0.99). Once achieved, one can recover 39 key bits (Z(1)

1 , Z
(3)
1 and the remaining

unknown bits of Z
(5)
1 ) numbered 0-15, 32-47 and 73-79 with the same distin-

guisher where Eq. (5) is fixed and known. For this, we need 46 additional known
plaintexts. The remaining 41 key bits can be recovered with an exhaustive search
within negligible computational complexity. Note that in this case, the Demirci-
Biryukov relation applied on the decryption operation results in the same dis-
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tinguisher. As far as we know, it is the fastest attack on 2.5-rounds IDEA not
involving any weak-key assumption.

If a decryption oracle is available, instead of an encryption one, it is possible
to mount a similar (chosen-ciphertext) attack: fix C

(2)
1 and C

(2)
2 to an arbitrary

constant, and guess Z
(1)
1 , Z

(1)
3 , and Z

(1)
5 . In a second step, guess the remain-

ing unknown bits of Z
(3)
1 , Z

(3)
2 , and Z

(2)
5 ; one can finalize the attack using an

exhaustive search.
We can extend to 3 rounds the attack previously described in a straightfor-

ward way: actually, if we fix X
(1)
1 and X

(1)
3 and guess Z

(2)
5 , Z1

(3)
, Z

(3)
2 , Z

(3)
5 and

Z
(3)
6 (which represent key bits numbered 50-81 and 89-120), one can recover 64

key bits in a 264 process if 71 chosen-plaintext are available. Then, once Z
(2)
5 ,

Z1
(3)

, Z
(3)
2 , Z

(3)
5 and Z

(3)
6 are known, one can apply the attack on 2.5 rounds

to derive 49 more bits (numbered 0-15, 32-47, 73-79 and 127) with negligible
complexity and the remaining 15 bits can finally be searched exhaustively.

The chosen-ciphertext version of this attack is clearly less effective, since one
has to guess at least 96 unknown key bits (corresponding to subkeys Z

(3)
5 , Z

(3)
6 ,

Z
(3)
1 , Z

(3)
2 , Z

(2)
5 , Z

(1)
1 , Z

(1)
3 , and Z

(1)
5 ; the unknown key bits are numbered 0-15,

32-47, 50-81,and 89-120).
For attacking 3.5 rounds, one uses a new time the distinguisher described

above, one fixes X
(1)
1 and X

(1)
3 and one guesses furthermore all the keys of

the last half-round; the subkeys under consideration are then Z
(2)
5 , Z

(3)
1 , Z

(3)
2 ,

Z
(3)
5 , Z

(3)
6 , Z

(4)
1 , Z

(4)
2 , Z

(4)
3 and Z

(4)
4 (i.e. all the key bits but the interval 18-49,

representing 96 key bits). The computational effort is approximately equal to
297 if 103 chosen-plaintexts are available.

The same attack can be adapted for a decryption oracle, however resulting in
a higher complexity: if 119 chosen-ciphertext are available to an attacker (where
C

(4)
1 and C

(4)
3 are fixed to an arbitrary constant), then one can recover 112 key

bits numbered 0-111 (corresponding to subkeys Z
(2)
5 , Z

(2)
1 , Z

(2)
3 , Z

(1)
5 , Z

(1)
6 , Z

(1)
1 ,

Z
(1)
2 , Z

(1)
3 , and Z

(1)
4 ).

3.5 Trading Time and Memory

We show now that it is possible under certain circumstances to trade memory
and time complexities in the attacks of Nakahara et al. [17].

Let us consider 2.5-rounds IDEA, and let us assume that we have 55 known
plaintext-ciphertext pairs at disposal. For all possible values of Z

(1)
1 , Z

(3)
1 , and

Z
(1)
5 (i.e. key bits numbered 0-15, 32-47, and 64-79), we can compute a guess for

the value of the following expression.

Z
(1)
2 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(3)
2 ⊕ Z

(3)
3︸ ︷︷ ︸

constant

⊕ lsb
(
δ(2) ⊕ γ(2)

)
(6)

The sub-sum depending only of the key bits is unknown but constant. Let us store
all these guesses in a large hash table made of 248 55-bit words, As second step of
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the attack, one guesses the key bits Z
(2)
5 , Z

(3)
1 , and Z

(3)
2 (i.e. bits numbered 57-72

and 89-120): for all these guesses, and for the 55 ciphertexts, we can compute (by
partially decrypting the ciphertexts) the value of lsb(δ(2) ⊕ γ(2)) and checking
whether this value (or its complement) is stored in the table or not. With high
probability, the right subkey candidate will be determined by one of the few
expected matches. This attack hence requires two times 55 · 248 ≈ 254 partial
encryptions/decryptions, and 248 memory cells, while the remaining 41 unknown
bits can be recovered with an exhaustive search within negligible complexity.

The attack can be extended to more rounds in the following way. Using the
same approach than for the 2.5-round case, one computes a hash table contain-
ing, for all possible values of Z

(1)
1 , Z

(3)
1 , and Z

(1)
5 , a guess for

Z
(1)
2 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(3)
2 ⊕ Z

(3)
3︸ ︷︷ ︸

constant

⊕ lsb
(
δ(2) ⊕ γ(2)

)
⊕ lsb
(
δ(3) ⊕ γ(3)

)

for 71 known plaintext-ciphertext pairs. In a second step, by guessing Z
(2)
5 , Z

(3)
1 ,

Z
(3)
2 , Z

(3)
5 , and Z

(3)
5 (i.e. key bits numbered 50-81 and 89-120), one can recover

a total of 96 key bits, the remaining 32 ones with help of an exhaustive search,
in an approximate overall computational complexity of 270 operations.

Finally, this attack can be extended to 3.5 rounds if we guess the additional
unknown key bits of Z

(4)
1 , Z

(4)
2 , Z

(4)
3 , and Z

(4)
4 (i.e. bits numbered 0-17 and 121-

127). One needs in this case 103 known plaintext-ciphertext pairs, 248 103-bit
words of memory, and a computational complexity of about 2103 operations.

The same attack strategy on 4 rounds would imply guessing all the key bits,
thus it is less efficient than an exhaustive key search.

3.6 Combination with ther Attacks

Interestingly, we note that our attacks can be used in parallel with other attacks
to gain more key bits. For instance, the attack on 3-rounds IDEA of Demirci et
al.described in [6] is able to recover the values of Z

(1)
2 , Z

(1)
4 , Z

(2)
5 , and Z

(3)
5 (which

represents 41 key bits) in a 242 effort (after a 264 precomputation). Then, to de-
rive 32 other key bits, the authors assume that a decryption oracle is available.
If it is not the case, one can still relax this condition by applying the attack de-
scribed in §3.4 and recover 41 additional key bits, namely those numbered 73-81
and 89-120, within negligible computational complexity. Similar considerations
apply if only a decryption oracle is available.

Another interesting combination of known attacks and the ones described in
this paper is the following: in [5], Demirci describes a square-like distinguisher
which, with help of two sets of 232 chosen-plaintexts, allows to recover Z

(3)
5 in

about 249 operations. If, in a second step, we plug the obtained value of Z
(3)
5

into the attack described in §3.4, we can derive 48 other key bits numbered 66-
81, and 89-120 in a 249 computational effort in a second step, and finally the
remaining bits within negligible time. This defines an attack which derives all key
bits within 250 operations if 233 chosen-plaintexts are available. This represents

O
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a computational complexity decrease by a factor of about 232. Unfortunately,
the same strategy does only marginally improve the attack against 3.5 (or more
rounds): one can replace the final exhaustive search of the remaining 80-bit keys
by our more efficient attack.

3.7 A New Square-Like Distinguisher

As observed for the first time by Nakahara et al. [15] and later by Demirci [5],
square-like distinguishers can be used with success to attack IDEA. We present
now such a distinguisher which is somewhat simpler to use than the ones available
in the literature.

Lemma 2 (Square-Like Distinguisher on 2.5-Round IDEA). Let 216 dif-
ferent inputs of 2.5-round IDEA be defined as follows: X

(1)
1 , X

(1)
2 , and X

(1)
3 are

fixed to arbitrary constants, and X
(1)
4 takes all possible values. Then the XOR of

the 216 values of the equation

X
(1)
2 ⊕X

(1)
3 ⊕ C

(1)
2 ⊕ C

(1)
3 ⊕

Z
(1)
2 ⊕ Z

(1)
3 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(3)
2 ⊕ Z

(3)
3 ⊕

lsb
(
γ(1) ⊕ δ(1)

)
⊕ lsb
(
γ(2) ⊕ δ(2)

)
(7)

is equal to 0 with probability one.

We can then use this distinguisher to attack reduced-round versions of IDEA. To
attack 3 rounds, encrypt 39 different structures of 216 chosen plaintexts according
to Lemma 2. Then, for all possible values of Z

(3)
5 and Z

(3)
6 (i.e. bits numbered

50-81), partially decrypt the ciphertext for the 39 structures using the same
iterative strategy as in Alg. 1.. This attack recovers 32 key bits, and with a few
more chosen plaintexts, we can apply the attack on 2.5-rounds described in §3.4
to recover all the keys bits. In summary, this attack requires less than 222 chosen-
plaintexts and a computational complexity of approximately 250 operations.

On 3.5 rounds, we can attack the round keys Z
(3)
5 , Z

(4)
1 , and Z

(4)
2 (i.e. 48 key

bits numbered 50-65 and 82-113) in a similar fashion. In this case, we need 55
structures of 216 chosen plaintexts (i.e. less than 222 chosen plaintexts as well),
and a computational complexity of approximately 3 · 216 · 248 ≈ 266 operations.

Finally, we can attack 4 rounds using the same strategy by guessing further
key bits, i.e. those of Z

(4)
5 and of Z

(4)
6 , which represents 80 unknown bits in

total. Hence, we need about 87 structures of 216 chosen plaintexts, which is less
than 223 chosen plaintexts, and a computational cost of about 3 · 216 · 280 ≈ 298

operations.

4 Summary of the Attacks

In this paper, we have used the same kind of properties derived by Demirci [5]
and Nakahara et al. [16] to derive a sequence of simple, yet efficient attacks
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Rounds Data Time Attack type Ref. Note

2 210 CP 242 differential [14]

2 62 CP 234 linear-like §3.3
2 23 CP 264 square-like [5]

2.5 210 CP 2106 differential [14] Memory: 296

2.5 210 CP 232 differential [4] For one key out of 277

2.5 218 CP 258 square [15]

2.5 232 CP 259 square [15]

2.5 248 CP 279 square [15]

2.5 2 CP 237 square [15] Under 216 rel. keys

2.5 55 CP 281 square-like [5]

2.5 101 CP 248 linear-like §3.4
2.5 97 KP 290 linear-like [16]

2.5 55 KP 254 linear-like §3.5 Memory: 248

3 229 CP 244 differential-linear [3]

3 71 CP 271 square-like [5]

3 71 CP 264 linear-like §3.4
3 233 CP 264 collision [6] Memory: 264

3 233 CP 250 linear-like + [5] §3.6
3 222 CP 250 square-like §3.7
3 71 KP 270 linear-like §3.5 Memory: 248

3.5 256 CP 267 truncated diff. [3]

3.5 238.5 CP 253 impossible diff. [1] Memory: 248

3.5 234 CP 282 square-like [5]

3.5 224 CP 273 collision [6]

3.5 222 CP 266 square-like §3.7
3.5 103 CP 2103 square-like [5]

3.5 103 CP 297 linear-like §3.4
3.5 119 KP 2112 linear-like [16]

3.5 103 KP 297 linear-like §3.5 Memory: 248

4 237 CP 270 impossible diff. [1] Memory: 248

4 234 CP 2114 square-like [5]

4 224 CP 289 collision [6] Memory: 264

4 223 CP 298 square-like §3.7
4 121 KP 2114 linear-like [16]

4.5 264 CP 2112 impossible diff. [1]

4.5 224 CP 2121 collision [6] Memory: 264

5 224 CP 2126 collision [6] Memory: 264

Fig. 3. Attacks against IDEA

against reduced-round versions of IDEA; the attacks against 2 and 2.5 rounds
are the best known ones not involving any weak-key assumption, to the best
of our knowledge. Some of them, given the same order of computational com-
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plexity, reduce the amount of necessary chosen plaintexts, while other attacks,
given a comparable amount of chosen texts, decrease favorably the computa-
tional complexity; additionally, some tradeoffs between time and memory are
presented, which lead to far less complex attacks using only known plaintext-
ciphertext pairs. Furthermore, we showed how to use some of these attacks in
combination with other known attacks, which allows sometimes to gain more
key bits with a lesser complexity, or to avoid the use of both encryption and
decryption oracles. The more important attacks against this block cipher are
tabulated in Figure 3, where KP (resp. CP) means “known plaintext-ciphertext
pairs” (resp. “chosen-plaintexts”), as well as their respective complexities. We
observed that it is possible to dramatically decrease the complexity attacking
IDEA by combining “independent” properties in a divide-and-conquer fashion.
A nice illustration is certainly the attack on 3-rounds IDEA described in §3.6:
it allows to reduce the computational complexity from 282 down to 250 and to
somewhat approach the performances of the attack by Borst et al. [3] based on
truncated differentials. In another case, we are able to relax some conditions,
like the need of two oracles. Although such combinatorial properties (mainly
due to the key-schedule algorithm) do not seem to result in a threat against the
full version of the cipher, an important open question is to know whether such
properties can be extended to attack more rounds.
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Abstract. This paper discusses the state-of-the-art software optimiza-
tion methodology for symmetric cryptographic primitives on Pentium
III and 4 processors. We aim at maximizing speed by considering the
internal pipeline architecture of these processors. This is the first paper
studying an optimization of ciphers on Prescott, a new core of Pen-
tium 4. Our AES program with 128-bit key achieves 251 cycles/block
on Pentium 4, which is, to our best knowledge, the fastest implemen-
tation of AES on Pentium 4. We also optimize SNOW2.0 keystream
generator. Our program of SNOW2.0 for Pentium III runs at the rate
of 2.75 μops/cycle, which seems the most efficient code ever made for
a real-world cipher primitive. For FOX128 block cipher, we propose a
technique for speeding-up by interleaving two independent blocks using
a register group separation. Finally we consider fast implementation of
SHA512 and Whirlpool, two hash functions with a genuine 64-bit archi-
tecture. It will be shown that new SIMD instruction sets introduced in
Pentium 4 excellently contribute to fast hashing of SHA512.

1 Introduction

Recent microprocessors, especially Intel processors, have long pipeline stages to
raise clock frequency, which, on the other side, often leads to new performance
penalty factors. Now it is not rare that a program runs slower on a newer pro-
cessor with a higher clock frequency. It seems that the clock-raising of modern
processors is approaching to its margin. That is, for maximizing performance of
a software program on a processor, it is becoming increasingly important for pro-
grammers to understand its hardware architecture and programming techniques
specific to the processor.

This paper deals with Intel Pentium III and 4 processors, which are most
widely used in modern PCs, and studies methodology for optimizing speed of
recently proposed symmetric ciphers and hash functions on these processors.
Intel recently shipped a new Pentium 4 (Prescott) with an architecture different
from the previous Pentium 4 (Willamette, Northwood) under the same name.

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 398–412, 2005.
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Since we often have to discuss these different cores separately, we call the old
cores Pentium 4-N, and the new core Pentium 4-P to distinguish them.

First, in section 2, we refer to Gladman’s code of Serpent block cipher [9] to
see to what extent an architecture of microprocessors affects performance of the
same code. It will be seen that even if everything is on the first level cache, the
number of execution cycles of a given code significantly varies on a processor
with a different version. Then we briefly summarize structural characteristics of
Pentium III and 4. It should be noted that Pentium 4 has successfully raised
its clock frequency by increasing the number of pipeline stages, but in return,
SIMD instructions work only in a longer latency on this processor.

In section 3, we show how to measure a speed of a target assembly code on
these processors. We have adopted a common method for the measurement; i.e.
we count the number of clock cycles of a target subroutine using an internal
timer of the processor. However in repeating our measurement experiments, we
have found that an accurate measurement of execution cycles is not a simple
issue as it looks on Pentium 4 particularly with Hyperthread Technology. Since
this is a separate matter of interest but a less cryptographic topic, we will give
a further observation in an appendix.

In subsequent sections, we specifically discuss software optimization tech-
niques for symmetric cryptographic primitives. Our first target algorithm is AES
[6]. The structure of AES is very suitable for 32-bit processors, but if we aim at
ultimate performance, a dependency chain and a register starvation are likely
a bottleneck of the speed. We carefully selected and arranged registers and in-
structions, and as a result, our optimized code with 128-bit key runs in 251
cycles/block on Pentium 4, which is, to our best knowledge, the fastest imple-
mentation of AES on Pentium 4.

The next algorithm is stream cipher SNOW2.0 [4]. This algorithm has two
highly independent functions inside, and hence is suitable for superscalar pro-
cessors. We derive a possible minimum number of μops on Pentium III and 4,
and show that this number can be achieved in practice. Our program generates a
key stream very efficiently at the rate of 2.75 μops/cycle on Pentium III, which
is very close to the structural limit of Pentium III and 4 (3 μops/cycle), and
is, as far as we know, the most efficient code designed for a read-world cipher
primitive.

We also give the first performance analysis of FOX128 block cipher [11]. Since
this cipher has an 8-byte×8-byte matrix inside, we should use the 64-bit MMX
registers, but due to a long dependency chain, a straightforward program runs
inefficiently. However, fortunately this algorithm does not require many registers,
and we can improve performance by assigning two independent register sets to
two independent blocks respectively and interleaving the two codes in an internal
block loop. It will be seen that this technique excellently improves the speed of
FOX128.

Finally we deal with hash functions SHA512 [7] and Whirlpool [3]. These hash
functions have a genuine 64-bit structure, and use of 64-bit MMX instructions
is essential. Nakajima et al. [14] studied performance analysis of these hash
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functions on Pentium III, but due to missing “64-bit add” instructions, SHA512
had a heavy performance penalty on Pentium III. This paper first gives detailed
performance analysis of SHA512 and Whirlpool on Pentium 4. We show that a
two-block parallel implementation (in the sense of [14]) using the 128-bit XMM
registers significantly boosts its hashing speed.

All the results shown in this paper were obtained using the following PCs.

Table 1. Our reference machines and environments

Processor Pentium III Pentium 4 Pentium 4

Core Coppermine Northwood Prescott

Clock 800MHz 2.0GHz 2.8GHz

Hyperthread no no yes

Memory 256MB 1GB 512MB

OS Windows 2000 Windows XP Professional Windows XP Professional

Compiler Microsoft Visual Studio .NET 2003/Macro Assembler Version 7

2 Pentium III and 4 Processors

2.1 Pentium III and 4 at a Glance

Table 2 shows our performance measurement results of Gladman’s implementa-
tion [9] of Serpent block cipher [1] written in an assembly language. In [9] we
can find two assembly language source codes: one is coded using 32-bit x86 in-
structions only (Program 1) and the other encrypts two blocks in parallel using
64-bit MMX SIMD instructions, where the first block is put on the upper 32-bit
half of the MMX registers and the second block on the lower half (Program 2).
This parallel encryption technique works well because Serpent was designed so
that the entire algorithm could be efficiently implemented using 32-bit logical
and shift operations only. This implementation technique can be used for en-
crypting not only two independent message streams but also one single stream
with a non-feedback mode of operation such as a counter mode. In addition, we
modified Program 2 to enable us to encrypt four blocks in parallel using 128-bit
XMM SIMD instructions (Program 3); this translation is very straightforward.

Table 2. Encryption speed of Gladman’s Serpent codes (cycles/block)

Pentium III Pentium 4-N Pentium 4-P

Program 1 (32-bit code) 773 1267 689

Program 2 (64-bit code) 570 1052 1119

Program 3 (128-bit code) - 656 681

Program 1 is very slow on Pentium 4-N; this is probably because 32-bit shift
instructions have long latencies (4 or 5 cycles) on this processor, which was later
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improved on the new Prescott core (more than one shift in one cycle). Program
2 runs faster on Pentium III but not twice as fast, because we need four instruc-
tions to do a rotate shift on the MMX registers. The reason why Program 2
is again so slow on Pentium 4 is totally different; the MMX units of Pentium
4 work only in half speed. On the other side, Program 3 is fast as expected
due to the SIMD computation, as compared with Program 2. (Program 3 does
not work on Pentium III because Pentium III does not have 128-bit XMM shift
instructions).

Note that these programs are not optimized for Pentium 4, and hence this
table should not be seen as a maximal performance figure of Serpent. It was in-
tended to show a typical example where the same code runs in a totally different
efficiency on a processor with a different version. Table 2 clearly shows that a
selection of a processor and a careful optimization on the processor are critically
important for maximizing performance.

2.2 Pentium III and 4 a Bit More

We here sketch structural characteristics of Pentium III and 4 for later sections.
For more details about the internal architecture and optimization tips of Pen-
tium III and 4-N, see an excellent article written by Agner Fog [8], which tells
us much more than any published documents about these processors.

[Pentium III] One of the biggest stall factors of Pentium III comes from the
decoding stage, where a sequence of x86 instructions is broken down into RISC-
style micro operations (μops). This break-down rule is quite complex, and a
programmer must carefully arrange the order of instructions in order not to
suffer a stall in this stage.

The executing stage has five independent pipes p0–p4, where p0 and p1 han-
dle arithmetic and logical μops, p2 is used for reading from memory, and p3/p4
are used for writing to memory. This means that to aim at 3 μops/cycle, which
is the maximal execution rate of Pentium III, we have to assign at least one μop
out of three μops to memory read/write.

[Pentium 4 Northwood] In Northwood, instructions are cached after decod-
ing. This means that the decoding stage is no longer a bottleneck of speed,
assuming that the size of a critical loop is sufficiently small. An important fea-
ture of Northwood is that execution units for simple 32-bit μops run in double
speed, but those for 64-bit/128-bit SIMD μops work only in half speed.

A special penalty of Northwood comes from 32-bit shift instructions, which
have long latencies, typically 4 or 5 cycles. Also reading from memory to the
MMX/XMM registers is very slow, taking approximately 8 cycles, according to
[8]. The maximal execution rate of this processor remains 3 μops/cycle.

[Pentium 4 Prescott] This new core of Pentium 4 has not been well docu-
mented. The speed of a 32-bit shift instruction is greatly improved; more than
one shift can be issued in a single cycle (but not exactly two shifts in our exper-
iments, unlike what Intel’s manual says). This is a good news.
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However, many μops of Prescott have longer latencies than those of North-
wood due to a deeper pipeline of this processor. The latency of a 32-bit load and
an xor, for instance, is 4 and 1, respectively (2 and 0.5 for Northwood), which
can be a new performance constraint.

Table 3 summarizes major differences of Pentium III and 4. The sixth and
seventh rows show a latency of a sequence of two instructions, whose results
were obtained by our own experiments. This type of sequence often appears on
a dependency chain of block cipher codes.

Table 3. Pentium III vs. Pentium 4

Pentium III Pentium 4-N Pentium 4-P

Pipeline Stages 10 20 32

L1 data cache 16KB 8KB 16KB

32-bit load latency/throughput 3/1 2/1 4/1

32-bit xor latency/throughput 1/0.5 0.5/0.5 1/0.5

32-bit shift latency/throughput 1/1 4/1 >0.5/1

mov ebx,TABLE[eax] / mov eax,ebx 4 cycles 3 cycles 5 cycles

movq mm0,TABLE[eax] / movd eax,mm0 4 cycles 13 cycles 18 cycles

3 How to Measure Execution Cycles

A common method for measuring a speed of a piece of code is to insert the code
to be measured between two CPUID-RDTSC sequences, where CPUID flushes the
pipeline and RDTSC reads processor’s internal clock value as follows:

xor eax,eax xor eax,eax

cpuid cpuid

rdtsc rdtsc

mov CLK1,eax mov CLK3,eax

xor eax,eax xor eax,eax

cpuid cpuid

FUNCTION(..., int block) ; nothing here

xor eax,eax xor eax,eax

cpuid cpuid

rdtsc rdtsc

mov CLK2,eax mov CLK4,eax

xor eax,eax xor eax,eax

cpuid cpuid

Code 1. Measurement of FUNCTION Code 2. Measurement of overhead

Clearly CLK2-CLK1 shows clock cycles from line 4 to line 11, but this value
contains an overhead of measurement itself, which corresponds to CLK4-CLK3.



How to Maximize Software Performance 403

Hence we define the speed of FUNCTION as ((CLK2-CLK1)-(CLK4-CLK3))/block
(cycles/block). In our reference PCs, the overhead CLK4-CLK3 is 214, 632 and
847 cycles for Pentium III, 4-N and 4-P, respectively.

In practice, the measured number of cycles varies due to various reasons. We
hence ran the code above many times and adopted an average value, not a min-
imal value, as the speed of FUNCTION. For more details about the measurement
issue on Pentium 4, see appendix.

4 AES

The first example of our implementation is AES. For the description and nota-
tions of the AES algorithm, refer to [6]. The fastest AES codes currently known
on Pentium III and Pentium 4-N were designed by Lipmaa [12][13]. However no
information about his implementation details has been published. Our imple-
mentation below is hence independent of his works.

AES is a typical cipher from an implementation viewpoint in the sense that
we have to make use of data registers also as address registers alternatively on
its critical path, which means that a dependency chain is likely a performance
bottleneck. A common x86 code of one round of AES consists of (1) a four-
time repetition of the following sequence (with different input registers), which
corresponds to Subbytes+Shiftrows+Mixcolumns, and (2) four xors, which cor-
respond to AddRoundKey. Note that, while the final round of AES is different
from other rounds, it can be implemented using the same sequence below with
another tables, which will be referred as table5 to table8. We hence need a
total of 8KB memory for the lookup tables.

movzx esi,al ; lowest byte of input eax

mov/xor register1,table1[esi*4] ; first table lookup (4 byte)

movzx esi,ah ; second byte of input eax

mov/xor register2,table2[esi*4] ; second table lookup (4 byte)

shr eax,16 ; move higher 16 bits to lower side

movzx esi,al ; third byte of input eax

mov/xor register3,table3[esi*4] ; third table lookup (4 byte)

movzx esi,ah ; highest byte of input eax

mov/xor register4,table4[esi*4] ; fourth table lookup (4 byte)

Code 3. An example of 1/4 component of Subbytes+Shiftrows+Mixcolumns
(mov for the first time and xor for the second to the forth times)

In an actual assembly program, how to minimize the latency of one round
sequence is not trivial due to a “register starvation”. Since we need four one-byte
components of registers1 to register4 in the next round, these four registers
should be eax, ebx, ecx and edx, but this is impossible without saving/restoring
at least one input register in each round, which requires additional instructions.
Assigning 64-bit MMX registers to registers1 to 4 also requires additional in-
structions for copying them to eax, ebx, ecx and edx for the next round, since
we can not direct extract a byte of an MMX register to an x86 register.
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[Pentium III] Our implementation on Pentium III uses four specially ar-
ranged lookup tables. These tables have an 8-bit input and a 64-bit output,
where table1 to table4 (in Code 3) are put on the lower 32-bit half of each
entry of our new tables, and table5 to table8 for the final round are put on the
higher 32-bit half of the entry. We also assign two x86 registers and two MMX
registers to register1 to register4 for all rounds except the final round, and
assign four MMX registers to all of register1 to register4 in the final round.
movq/pxor instructions are used to access MMX registers.

This lookup table structure contributes to reducing code size and hence in-
creasing decoding efficiency. This structure also works very well in the final
round, because the output of the final round no longer has to be copied to x86
registers and can be treated as full 64-bit data, as shown below. Our imple-
mentation of AES with 128-bit key on this strategy runs at the speed of 232
cycles/block in our measurement policy. When the block loop overhead (see
appendix) is taken into consideration, this is almost the same performance as
Lipmaa’s best known result.

punpckhdq mm0,mm1 ; two upper 32-bit -> 64-bit

punpckhdq mm2,mm3 ; two upper 32-bit -> 64-bit

pxor mm0, Final_Subkey1 ; AddRoundKey (8 bytes)

pxor mm2, Final_Subkey2 ; AddRoundKey (8 bytes)

movq [memory+0], mm0 ; store ciphertext (8 bytes)

movq [memory+8], mm2 ; store ciphertext (8 bytes)

Code 4. Our AES code after the final round

[Pentium 4] Since MMX memory instructions have a very long latency on Pen-
tium 4 (for both Northwood and Prescott), we have to write a code using x86 reg-
isters and instructions only. In addition, using a high 8-bit partial register, such
as ah, leads to a special penalty on Pentium 4, while no penalty takes place in
using a low 8-bit partial register. Specifically, movzx esi,ah is decomposed into
two μops on Pentium 4 unlike Pentium III. Code 1 uses this type of instruction
twice, but one of them can be avoided by changing the last two lines as follows:

shr eax,8 ; only one uop (upper 24 bits = 0)

mov/xor register4, table4[eax*4] ; fourth table lookup

Code 5. Modification of Code 1 for Pentium 4

For Northwood, which has only 8KB L1 data cache, we reduced the size of
our lookup tables to 6KB by removing table5 and table6 of the final round
without increasing the number of instructions. This is possible by using a movzx
instruction as shown in Table 4 (note that Pentium is a little-endian proces-
sor). As a result, our code runs at the speed of 251 cycles/block on Pentium 4
Northwood. This is, as far as we know, the fastest implementation of AES on
Pentium 4. On the other hand, our implementation on Prescott is unfortunately
slower than that on Northwood. We feel that this is due to a high latency of
load instructions (4 cycles for Prescott and 2 cycles for Northwood).
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Table 5 summarizes our performance results. Our codes have the following
interface and we assume that the subkey has been given in the third argument.
We set block to 128 or 256, which was fastest in our environments. We did not
use any static memory except read-only lookup tables.

FUNCTION( uchar *plaintext, uchar *ciphertext, uint *subkey, int block )

Table 4. Reduction of lookup tables of the final round

Operation Instruction Table Size

table5 x → (0‖0‖0‖S[x]) movzx Register,BYTE PTR table8+3[esi*4] 0

table6 x → (0‖0‖S[x]‖0) movzx Register,WORD PTR Table8+2[esi*4] 0

table7 x → (0‖S[x]‖0‖0) mov Register,table7[esi*4] 1KB

table8 x → (S[x]‖0‖0‖0) mov Register,table8[esi*4] 1KB

Table 5. Our implementation results of AES

Pentium III Pentium 4-N Pentium 4-P

μops/block 596 654 654

cycles/block 232 251 284

cycles/byte 14.5 15.7 17.8

μops/cycles 2.57 2.61 2.30

5 SNOW2.0

Our next example of implementation is stream cipher SNOW2.0, which was
designed by Ekdahl and Johansson and presented at SAC2002 [4]. SNOW2.0 was
intended to overcome a slight weakness of its earlier version, which was initially
submitted to the NESSIE project [15]. SNOW2.0 is based on a firm theoretical
background and is very fast. It is now under discussion for an inclusion in the
next version of the ISO/IEC 18033 standard. Our paper gives the first detailed
performance analysis of SNOW2.0 in an assembly language.

Figure 1 illustrates the keystream generation algorithm of SNOW2.0, which
consists of sixteen 32-bit registers si with feedback mechanism with two 32-bit
memories R1 and R2. α and α−1 are multiplicative constants over GF (232),
and S is an AES-like 4-byte×4-byte matrix multiplication. Clearly SNOW2.0
strongly targets at 32-bit processors from the implementation point of view.

According to the authors’ document, α and α−1 were chosen so that the
multiplications with these values over GF (232) could work efficiently using two
pre-calculated tables MUL_a and MUL_ainv as follows:

s * α = (s << 8) xor MUL_a[s >> 24]
s * α−1 = (s >> 8) xor MUL_ainv[s & 0xff]
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Fig. 1. SNOW 2.0

The straightforward implementation of the first operation (multiplication
with α) requires four instructions (five μops), but we have found that it can
be done with fewer instructions as shown below by preparing a new table MUL_a2
such that MUL_a2[x] = MUL_a[x] ^ (a & 0xff). Since we need 2KB for MUL_a2
and MUL_ainv and 4KB for S, the total size of the lookup tables is 6KB, which
fits in L1 data cache of both Pentium III and Pentium 4.

rol eax,8 movzx esi,al

movzx esi,al shr eax,8

xor eax,MUL_a2[esi*4] xor eax,MUL_ainv[esi*4]

Code 6. Multiplication with α (left) and α−1 (right)

The structure of SNOW2.0 is very suitable for superscalar processors, since
the LFSR part (the upper half of Figure 1) and the FSM part (the lower half)
can be carried out mostly independently. For fast implementation of SNOW2.0,
we should treat sixteen consecutive LFSR clocks as “one round” as suggested
by the designers, which enables us to skip copy operations on the sixteen 32-bit
registers. We implemented the keystream generation algorithm SNOW2.0 in an
assembly language for Pentium III and Pentium 4, respecting the subroutine
interface given by designers’ C codes at [5]. We simply added an additional vari-
able “block” in the second argument, so that the routine can generate block*64
keystream bytes at one subroutine call as follows (the state information on si,
R1 and R2 are passed as static variables):

FUNCTION( uint *keystream_block, int block )

Our code requires 34 and 33 μops in one LFSR clock, i.e. in every four-byte
keystream generation, on Pentium III and Pentium 4, respectively. We think that
this already reaches the theoretical minimum number of μops. Table 6 shows a
detailed breakdown of the μops of our code. We read st twice for reducing the
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latency of the LFSR part, which is the reason why the number of μops of “read
from LFSR” is 5 (not 4 as naturally expected from Figure 6), and the number
of μops of “s * α” is 3 (not 4).

Table 7 gives performance of our assembly codes. Our code runs at the speed
of 203 cycles/block on Pentium 4 Northwood, which is 30% faster than designers’
optimized C code. The remarkable aspect of our code is its high parallelism. For
example, our program on Pentium III works at the rate of 2.75 μops/cycle,
which is, as far as we know, the most efficient code that was achieved in a
real cryptographic primitive. This result also shows that SNOW2.0 is essentially
faster than RC4. If we take a close look at the structure of RC4, we will see that
RC4 requires at least 10 μops/byte including three reads and three writes. Hence
even if we assume that an RC4 code works in 2.80 μops/cycle it takes at least
3.6 cycles/byte (much more in practice), while our SNOW2.0 code is running in
3.1–3.4 cycles/byte.

Table 6. μops breakdown in one LFSR clock

S s * α s * α−1 read from write to xor/add Total μops
LFSR LFSR/keystream

Pentium III 12 3 4 5 4 6 34

Pentium 4 13 3 4 5 2 6 33

Table 7. SNOW2.0 key generation speed

Pentium III Pentium 4-N Pentium 4-P

μops/block 550 534 534

cycles/block 200 203 215

cycles/byte 3.13 3.17 3.36

μops/cycles 2.75 2.63 2.48

6 FOX128

FOX is a family of block ciphers, which was recently proposed by Junod and Vau-
denay [11]. Here we treat a “generic version” of 128-bit block cipher FOX128 with
16 rounds. The left part of Figure 2 illustrates the round function of FOX128,
and the right part gives the details of the f64 function in the round function.
The f64 function consists of a sequence of (1) key xor, (2) eight parallel sbox
lookups, (3) 8-byte × 8-byte matrix mu8, (4) key xor again, and (5) eight par-
allel sbox lookups again. This is essentially a 64-bit structure, suitable for use of
the MMX instructions on Pentium III and 4.

The straightforward implementation of the f64 function requires eight 2KB
tables for the first sbox layer and mu8, and additional one to four 1KB tables
for the second sbox layer. If we take a close look at the mu8 matrix, it is easily
seen that we can reduce one 2KB table in the first layer at the cost of three or
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Fig. 2. FOX128

four additional MMX μops. Our first implementation fully uses MMX registers
and MMX instructions in the main stream and in the f64 function, reducing the
table size to a total of 15KB (14KB/1KB for the first/second layer) so that the
entire tables are covered within 16KB. This runs at the speed of 692 cycles/block
on Pentium III, which is approximately 20% faster than designers’ optimized C
implementation. However, this program becomes very slow in Pentium 4 because
the f64 function has a long dependency chain and moreover Northwood suffers
a lot of cache miss penalties.

On the other hand, our implementation is free from a “register starvation”;
that is, four out of the eight MMX registers are enough to implement the entire
cipher, which means that half of the MMX registers can remain free. This leads
us to a possibility of another parallel implementation technique “register group
separation”. Specifically, we assign four MMX registers to one message stream
and the remaining four to another message stream, and interleave the two inde-
pendent codes inside a block loop. This technique is expected to contribute to an
efficient use of superscalar pipelines and improve an overall performance accord-
ingly. Our code remarkably reduces the number of execution cycles on Pentium
4. In particular, the improvement on Northwood is prominent; although the

Table 8. Our implementation results of FOX128

Pentium III Pentium 4-N Pentium 4-P

(I) (II) (I) (II) (I) (II)

μops/block 1269 1388 1395 1505 1395 1505

cycles/block 692 622 1986 1187 1481 981

cycles/byte 43.3 38.9 124.1 74.2 92.6 61.3

μops/cycle 1.83 2.23 0.70 1.27 0.94 1.53
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Northwood core is still paying the penalty of cache misses, its performance is
now very close to that on Prescott.

Table 8 summarizes performance measurement results of our FOX128 codes,
where (I) and (II) show the straightforward method and the two-block paral-
lel method, respectively. We adopted the same subroutine interface and coding
policy as that of the AES block cipher. In general, it is difficult to apply the
register group separation technique to codes using x86 registers only, but new
registers such as MMX and XMM have opened up a new possibility of this
parallel computation technique.

7 SHA512 vs. Whirlpool

We here discuss two genuine 64-bit hash functions SHA512 [7] and Whirlpool [3],
both of which are now under consideration for an inclusion in the next version
of the ISO/IEC 18033 standard. These algorithms well suit for 64-bit processors
and it is expected that the 64-bit MMX instructions can be efficiently used for
gaining performance. Nakajima et al. [14] discussed speed of these hash functions
on Pentium III, and reported that Whirlpool is slightly faster than SHA512.

SHA512 suffered heavy penalty cycles on Pentium III because Pentium III
does not have an instruction for 64-bit addition, which is an essential operation
of this algorithm. Pentium 4 solves this problem, but a high latency of MMX
memory instructions can be a possible penalty factor. On the other side, we
can hash two independent messages in parallel using 128-bit XMM instructions,
which is expected to boost the hashing speed.

The structure of Whirlpool is similar to AES. It uses an 8-byte × 8-byte
matrix (a 4-byte × 4-byte matrix for AES), and hence a straightforward imple-
mentation requires eight 2KB tables. Our coding method is basically the same

Table 9. Our implementation results of SHA512

1block = 128bytes Pentium III Pentium 4-N Pentium 4-P

single single double single double

μops/block 13924 8710 4363 8710 4363

cycles/block 5148 4666 2826 5294 3111

cycles/byte 40.2 36.5 22.1 41.4 24.3

μops/cycles 2.70 1.87 1.54 1.65 1.40

Table 10. Our implementation results of Whirlpool

1block = 64bytes Pentium III Pentium 4-N Pentium 4-P

μops/block 5206 5526 5526

cycles/block 2061 3024 2319

cycles/byte 32.2 47.3 36.2

μops/cycles 2.53 1.83 2.38
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as [14]; that is, we have only four tables and generate other data when necessary
using the pshufw (word shuffling) instruction.

Table 9 and Table 10 show our performance figures of SHA512 and Whirlpool,
respectively. We also made our own programs for Pentium III, where Whirlpool
runs faster than [14]. This is due to a better instruction scheduling. “single”
and “double” denote straightforward single message hashing using 64-bit MMX
instructions and double message hashing using 128-bit XMM instructions, re-
spectively. In the single message hashing, Whirlpool is still faster than SHA512
on Pentium 4 Prescott, (Northwood is slow simply due to cache miss penalties),
but the effect of double message hashing is evident; SHA512 then becomes more
than 30% faster than Whirlpool.

8 Concluding Remarks

This paper discussed various implementation trade-offs of cryptographic prim-
itives on Pentium III and 4 processors, introducing parallel encryption tech-
niques. The clock-raising of modern processors is approaching to its margin and
it seems that a next generation of processors goes toward independent multiple
cores, rather than a deeper pipeline and a higher superscalability. Hence we be-
lieve that parallel encryption/hashing techniques will be increasingly important
in a very near future.
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Appendix: On Measuring Execution Cycles

Our measurement method shown in section 3 agrees with [14], but not with [2].
Aoki et al. [2] regarded execution time for decrementing the block counter and
branching conditionally inside FUNCTION also as an overhead. Specifically, they
subtracted the number of execution cycles of the following “Null function” from
that of FUNCTION, and defined its result as performance of the target primitive.

/* push all used registers */

cmp dword ptr [block], 0

jz L1

align 16

L0:

dec dword ptr [block]

jnz L0

L1:

/* pop these registers once more */

We do not adopt this method because our definition is more practical and vis-
ible for users (application programmers) and moreover it is difficult to measure
the overhead of the loop processing accurately, due to the nature of superscalar
and out-of-order architecture of the processors. It should be noted that in Pen-
tium 4 micro-operations in a small loop are likely rearranged on the trace cache
so that the number of branches can be reduced [8].

Also, it is common to count execution cycles many times and regard the min-
imum value as a “real” cycle count in practice. This is based on the assumption
that an interruption by an operation system always increases execution cycles.
But this does not always hold for Pentium 4 with Hyperthread Technology (HT),
which enables a single processor to run two multi-threaded codes simultaneously.
Our experiments show that Code 2, for example, runs in 632 cycles on North-
wood without HT (or with disabled HT) in almost all cases, and takes more
cycles in some rare cases; however on Northwood with HT, Code 2 runs in 636
cycles in almost all cases and takes more or less cycles in some rare cases. We
saw it run even in 600 cycles!
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Another implicit assumption is that we should always obtain a constant cycle
count if no interruption takes place during the measurement. To make sure this,
we again measured the speed of Code 2 under DOS with disabling interruptions
for more than 20 processors with different stepping/revision numbers. As a result,
we found that only one type of processor (Prescott Stepping 3 Revision 0) did
not run in a constant time. We do not know reason of this instability.

This suggests that if we measure a target code many and many times, we
might finally obtain an exceptionally fast result, but clearly this does not make
sense in practice. We hence decided to take the most frequent value or an average
value in measuring a speed of a code. Our experiments show that the number of
cycles obtained by Aoki et al’s method [2] is smaller than ours by typically 6, 14
and 7 cycles/block for Pentium III, 4-N and 4-P, respectively. Hence to compare
our results with Aoki’s or Lipmaa’s, simply subtract these numbers from ours.
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Abstract. So far, efficient algorithmic countermeasures to secure the
AES algorithm against (first-order) differential side-channel attacks have
been very expensive to implement. In this article, we introduce a new
masking countermeasure which is not only secure against first-order
side-channel attacks, but which also leads to relatively small implemen-
tations compared to other masking schemes implemented in dedicated
hardware.

Our approach is based on shifting the computation of the finite field
inversion in the AES S-box down to GF (4). In this field, the inversion is
a linear operation and therefore it is easy to mask.

Summarizing, the new masking scheme combines the concepts of
multiplicative and additive masking in such a way that security against
first-order side-channel attacks is maintained, and that small implemen-
tations in dedicated hardware can be achieved.
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1 Introduction

Securing small hardware implementations of block ciphers against differential
side-channel attacks [8] has proven to be a challenging task. Hardware coun-
termeasures, which are based on special leakage-resistant logic styles, typically
lead to a significant increase of area and power consumption [14]. Algorithmic
countermeasures also lead to a significant increase of area, if implemented in
hardware. Nevertheless, algorithmic countermeasures can be tailored towards a
particular algorithm, and hence, they can be optimized to a certain extent.
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In case of the AES algorithm, several algorithmic countermeasures have been
proposed [2], [6], and [13]. They are all based on masking, i.e., the addition of
a random value (the mask) to the intermediate AES values. However two of
them, [2] and [13], are both susceptible to a certain type of (first-order) differ-
ential side-channel attack, the zero-value attack. The latter one has turned out
to be vulnerable even to standard differential side-channel attacks as well [1].
The countermeasure presented in [6] is not suitable for hardware implementa-
tions. The weakness of these three countermeasures is the way in which they
secure the intermediate values occurring in the AES SubBytes operation. The
SubBytes operation is the non-linear component within AES, which makes it
particularly difficult to mask.

In this article, we propose a secure masking scheme for the AES algorithm,
which is particularly suited for implementation in dedicated hardware. In or-
der to achieve security, we use a combination of additive and multiplicative
masking. The most tricky part when masking AES is to mask its non-linear
operation, which is the finite field inversion (short: inversion) in the S-box, i.e.,
the SubBytes operation. All other operations are linear and can be masked in
a straightforward manner as it is for example shown in [2]. Hence, this article
focuses on the inversion operation in the S-box only.

The masking scheme for the inversion presented in this article is based on
composite field arithmetic, which has already been previously used for efficient
S-box implementations in hardware [15]. However, while in [15] the inversion is
performed in GF (16), we shift the inversion down to GF (4) in this article. The
motivation for this is the fact that the inversion in GF (4) is a linear operation,
which can be masked easily.

Because of that we can build a masking scheme with very nice properties.
The approach presented in this article for example has a much smaller area-time
product than [2]. It also has the advantage of being secure against all first-order
differential side-channel attacks. In addition, it can be implemented in software
as well.

The remainder of this article is organized as follows. In Section 2 we motivate
our research by discussing zero-value attacks on multiplicative masking schemes.
Our analysis shows the need for masking schemes which are secure against zero-
value attacks. Such a new secure scheme is introduced in Section 3. Arguments for
the security of our scheme are provided in Section 4. The efficiency in hardware
compared to other masking schemes is discussed in Section 5. We conclude our
research in Section 6.

2 Discussion of Multiplicative Masking Schemes

The masking schemes proposed in [2] and [13] are susceptible to so-called zero-
value attacks. In this section, we analyze the effectiveness of zero-value attacks
against these masking schemes.

In AES, an AddRoundKey operation is performed prior to the first en-
cryption round and thus, prior to the first time when the inversion needs to be
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computed. If a key byte k equals a data byte d, then the result of AddRound-
Key, which is x = d + k, equals zero. This observation can readily be used in
an attack which is referred to as zero-value attack and was introduced in [6].

Let t denote a power measurement (trace) and let the set of all traces t be
denoted by T . Suppose a number of AES encryptions is executed and their power
consumption is measured. Assume that the input texts are known. For all 256
possible key-bytes k′, we do the following. We define a set M1 which contains
those measurements with k′ = d right before the SubBytes transformation. We
also define a set M2 which contains the measurements with k′ �= d right before
the SubBytes transformation.

M1 = {t ∈ T : k′ = d} (1)
M2 = {t ∈ T : k′ �= d} (2)

If k = k′, then the difference-of-means trace Md = M1 −M2 shows a con-
siderable peak at the point in time when the masked SubBytes operation has
been performed. This is due to the fact that set M1 contains the measurements
in which the 0-value is manipulated in the inversion. If k �= k′, then the defi-
nition of the sets is meaningless. Hence, no difference between the sets can be
observed.

The difficulty in this scenario is that one needs enough traces in M1 to reduce
the variance, i.e. to get rid of noise. In [9] it has been estimated that around 64
times more measurements are needed in a zero-value attack than in a standard
differential side-channel attack. This number indicates that zero-value attacks
still pose a serious practical threat and must be avoided.

3 Combined Masking in Tower Fields

In order to thwart zero-value attacks, we have developed a new scheme which
works with combinations of additive and multiplicative masks. Throughout the
whole cipher, including the SubBytes computation, the data is concealed by
an additive mask.

Before going into the details of our new scheme, we review some necessary
facts about the efficient implementation of SubBytes first.

3.1 Inversion in GF (256)

Our SubBytes design follows the architecture we have proposed in [15] (we
call this approach S-IAIK from now on) . This architecture is based on com-
posite field arithmetic [5], and has very low area requirements. Thus, it is ideally
suited for small hardware implementations. In this approach, each element of
GF (256) is represented as a linear polynomial ahx + al over GF (16).

The inversion of such a polynomial can be computed using operations in
GF (16) only:
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(ahx + al)−1 = a′
hx + a′

l (3)
a′

h = ah × d′ (4)
a′

l = (ah + al)× d′ (5)
d = (a2

h × p0) + (ah × al) + a2
l (6)

d′ = d−1 (7)

The element p0 is defined in accordance with the field polynomial which is
used to define the quadratic extension of GF (16), see [15].

In the following subsections we present the mathematical formulae for our
masking scheme.

3.2 Masked Inversion in GF (256)

In our masking scheme for the inversion, which we call Masked SubBytes
IAIK (short: MS-IAIK) from now on, all intermediate values as well as the
input and the output are masked additively. In order to calculate the inversion of
a masked input value, we first map the value as well as the mask to the composite
field representation as defined in [15]. This mapping is a linear operation and
therefore it is easy to mask. After the mapping, the value that needs to be
inverted is represented by (ah + mh)x + (al + ml). Note that both elements in
the composite field representation are masked additively.

Our goal is that all input and output values in the computation of the in-
verse are masked. Hence, we have to modify (3)-(7), by introducing functions
fah

, fal
, fd and fd′ , as follows:

((ah + mh)x + (al + ml))−1 = (a′
h + m′

h)x + (a′
l + m′

l) (8)

a′
h + m′

h = fah
((ah + mh), (d′ + m′

d),mh,m′
h,m′

d)

= ah × d′ + m′
h (9)

a′
l + m′

l = fal
((a′

h + m′
h), (al + ml), (d′ + m′

d),ml,m
′
h,m′

l,m
′
d)

= (ah + al)× d′ + m′
l (10)

d + md = fd((ah + mh), (al + ml), p0,mh,ml,md)

= a2
h × p0 + ah × al + a2

l + md (11)

d′ + m′
d = fd′(d + md,md,m

′
d)

= d−1 + m′
d (12)

The function fah
, fal

, fd and fd′ are functions on GF (16).

3.3 Derivation of the Functions fah
, fal

, fd and fd′

This section shows how to transform (4)-(7) into (9)-(12).

Transforming Equation 4 into Equation 9. Suppose that we calculate (4) with
masked input values, i.e., with ah + mh instead of ah and with d′ + m′

d instead
of d′:
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(ah + mh)× (d′ + m′
d) = ah × d′ + mh × d′ + ah ×m′

d + mh ×m′
d. (13)

Comparing the result of this calculation to (9) shows that the desired and
masked result, ah×d′ +m′

h, is only part of the result of (13). All the terms that
occur in addition due to the masks, have to be removed. These terms can be
easily removed by adding the terms (d′ + m′

d)×mh, (ah + mh)×m′
d, mh ×m′

d

and m′
h. This is done by the function fah

, which takes five elements of GF (16)
as input, and produces an element of GF (16) as output.

fah
(r, s, t, u, v) = r × s + s× t + r × v + t× v + u (14)

If we choose r = (ah + mh), s = (d′ + m′
d), t = mh, u = m′

h and v = m′
d

and compute fah
((ah + mh), (d′ + m′

d),mh,m′
h,m′

d), we get the desired result
ah × d′ + m′

h (see (9)).
One has to take care when adding correction terms that no intermediate val-

ues are correlated with values, which an attacker can predict. It needs to be
pointed out that the formulae, which we derive in this section, do not lead to a
secure implementation when directly implemented. The secure implementation
of these formulae requires the addition of an independent value to the first in-
termediate value that is computed. This becomes clear from the security proof
given in Section 4.

Another aspect, which we do not treat in this article, is the discussion of the
particular choice of the masks m′

h, m′
l, md and m′

d. In our implementation in
dedicated hardware, see [11] for details, we decided to re-use masks as often as
possible. For example, in our implementation of (9) we set v = m′

d = ml and
u = m′

h = mh. Consequently, in our implementation we calculate the function
fah

as shown in (15).

fah
= (ah + mh)× (d′ + ml)︸ ︷︷ ︸

dm4

+ (d′ + ml)×mh︸ ︷︷ ︸
c7

+ (ah + mh)×ml︸ ︷︷ ︸
c1

+ mh︸︷︷︸
c6

+mh ×ml︸ ︷︷ ︸
c5

(15)

The term which is labelled as dm4 refers to the masked data. The terms which
are labelled as c1 to c7 in this equation are the so-called correction terms which
are applied by the function fah

. It can be seen in the subsequent paragraphs
that we can re-use several of these correction terms. This significantly reduces
the area required for our implementation.

At first sight our numbering scheme for the masked-data terms and the cor-
rection terms might look erratic. However, the indices of the dmi and cj indicate
when a certain value would be calculated during an implementation. For in-
stance, the masked data is labelled by dm4 in this formula, because it would be
calculated only later. Equations (9)-(12) show, that the result of (12) is needed
for (9) and (10). Therefore, (9) would be calculated later.
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The reason why we make a difference in labelling masked-data terms and
correction terms is that it makes it easier to see how many additional operations
are introduced by the masking scheme. All terms labelled by dmi have to be
calculated in the original S-box design (S-IAIK, [15]) as well. However, all
terms labelled by cj are the corrections that we have to apply. Thus, these are
the additional operations, which are introduced by the masking.

In the same style as for (4), we subsequently transform (5) and (6).

Transforming Equation 5 into Equation 10. In order to transform (5) into (10)
we define a function fal

that applies the appropriate correction terms.
The function fal

takes seven elements of GF (16) as input and gives one
element of GF (16) as output.

fal
(r, s, t, u, v, w, x) = r + s× t + t× u + s× x + v + w + u× x (16)

If we choose r = a′
h +m′

h, s = al +ml, t = d′ +m′
d, u = ml, v = m′

h, w = m′
l

and x = m′
d we indeed get (10).

In our implementation, we set u = w (i.e. m′
l = ml) and x = m′

d = mh.
Hence, in our implementation, we calculate fal

as is shown in (17).

fal
= (ah × d′ + mh) + (al + ml)× (d′ + mh)︸ ︷︷ ︸

dm5

+ (d′ + mh)×ml︸ ︷︷ ︸
c8

+ (al + ml)×mh︸ ︷︷ ︸
c2

+ ml︸︷︷︸
c9

+ mh︸︷︷︸
c6

+ml ×mh︸ ︷︷ ︸
c5

(17)

As in the previous paragraphs, the terms that are labelled by ci are correction
terms.

Transforming Equation 6 into Equation 11. In order to transform (6) into (11)
we define a function fd that applies the appropriate correction terms (as demon-
strated in the previous paragraphs).

The function takes six elements of GF (16) as inputs and gives an element of
GF (16) as result.

fd(r, s, t, u, v, w) = r2× t+r×s+s2 +r×v+s×u+u2× t+v2 +u×w+u (18)

If we choose r = ah + mh and s = al + ml, t = p0, u = mh, v = ml and
w = md then we get (11).

In our implementation we set w = ml. Consequently, we calculate fd in our
implementation as shown in (19).
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fd = (ah + mh)2 × p0︸ ︷︷ ︸
dm1

+ (ah + mh)× (al + ml)︸ ︷︷ ︸
dm2

+ (al + ml)2︸ ︷︷ ︸
dm3

+ (ah + mh)×ml︸ ︷︷ ︸
c1

+ (al + ml)×mh︸ ︷︷ ︸
c2

+

c′3︷︸︸︷
m2

h ×p0︸ ︷︷ ︸
c3

+ m2
l︸︷︷︸

c4

+ mh ×ml︸ ︷︷ ︸
c5

+ mh︸︷︷︸
c6

(19)

As in the previous paragraphs, the terms that are labelled by cj or c′j are
correction terms.

Transforming Equation 7 into Equation 12. Calculating the inverse in GF (16) can
be reduced to calculating the inverse in GF (4) by representing GF (16) as quadratic
extension of GF (4).

In short, an element of GF (4)×GF (4) is a linear polynomial with coefficients
in GF (4), i.e., a = (ahx + al), with ah and al ∈ GF (4). The same formulae as
given in (17) – (19) can be used to calculate the masked inverse in GF (4)×GF (4).
In GF (4), the inversion operation is equivalent to squaring: x−1 = x2 ∀x ∈
GF (4). Hence, in GF (4) we have that (x + m)−1 = (x + m)2 = x2 + m2; the
inversion operation preserves the masking in this field.

4 Security of Our Masking Scheme

In this section, we show that all the operations discussed in Section 3, are secure.
We follow the security notion that has been introduced in [4] and strengthened
by [3]:

Definition 1. An algorithm is said to be secure if for all adversaries A and all
realizable distributions M1 and M2, M1 equals M2.

This definition is equivalent to the perfect masking condition given in [3] for
standard differential SCA. Counteracting higher-order differential SCA is not
within the scope of this article.

In the following paragraphs we will show that all data-dependent intermediate
values that occur in (17) – (19) fulfill Definition 1. These values are masked data
a+m, masked multiplications (a+ma)×(b+mb), multiplications of masked values
with masks (a + ma)×mb, and masked squarings (a + ma)2 and (a + ma)2 × p.

Definition 1 does imply that regardless of the hypotheses, which an attacker
can make, the distributions, which are derived by using these hypotheses, are
identical. Consequently, we must proof that every operation that is performed
in our masking scheme, leads to an output whose distribution does not depend
(in a statistical sense) on the input.
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Our proof is divided into two parts. In the first part, which consists of the
Lemmas 1 to 4, we show that the data-dependent intermediate values are all
secure. In the second part, which consists of Lemma 5, we show that also the
summation of the intermediate results can be done securely.

We re-use the Lemmas 1 and 2 of [3]:

Lemma 1. Let a ∈ GF (2n) be arbitrary. Let m ∈ GF (2n) be uniformly dis-
tributed in GF (2n) and independent of a. Then, a + m is uniformly distributed
regardless of a. Therefore, the distribution of a + m is independent of a.

Lemma 2. Let a, b ∈ GF (2n) be arbitrary. Let ma,mb ∈ GF (2n) be indepen-
dently and uniformly distributed in GF (2n). Then the probability distribution
of (a + ma)× (b + mb) is

Pr((a + ma)× (b + mb) = i) =
{

2n+1−1
22n , if i = 0, i.e., if ma = a or mb = b

2n−1
22n , if i �= 0.

Therefore, the distribution of (a + ma)× (b + mb) is independent of a and b.

These two lemmas cover almost all data-dependent operations in our masking
scheme. The operation (a + ma)×mb is covered by Lemma 3.

Lemma 3. Let a ∈ GF (2n) be arbitrary. Let ma,mb ∈ GF (2n) be indepen-
dently and uniformly distributed in GF (2n). Then the distribution of (a+ma)×
mb is

Pr((a + ma)×mb = i) =
{

2n+1−1
22n if i = 0, i.e., if ma = a or mb = 0

2n−1
22n if i �= 0.

Therefore, the distribution of (a + ma)×mb is independent of a.

Lemma 3 is a special case (b = 0) of Lemma 2. The proof is therefore omitted.
The two remaining operations that occur in our masking scheme, (a + ma)2

and (a + ma)2 × p are covered by Lemma 4.

Lemma 4. Let a ∈ GF (2n) be arbitrary and p ∈ GF (2n) a constant. Let
ma ∈ GF (2n) be independently and uniformly distributed in GF (2n).

Then, the distribution of (a + ma)2 and (a + ma)2 × p is independent of a.

Proof. According to Lemma 1, a + ma is uniformly distributed in GF (2n). This
is straightforward because for an arbitrary but fixed a, a+ma is a permutation of
GF (2n). Hence, (a+ma)2 gives all quadratic residues of GF (2n), regardless of a.
This implies that the distribution of (a+ma)2 is independent of a. Consequently,
also the distribution of (a + ma)2 × p (p is a constant) is independent of a.

The Lemmas 1 to 4 show that all major operations of our masking scheme are
secure. However, more intermediate results occur in the masking scheme because
we add the major operations, and thus, produce implicitly more intermediate
results than are directly visible from the formulae.
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Lemma 5 shows that these intermediate results can be added in a secure way.

Lemma 5. Let ai ∈ GF (2n) be arbitrary and M ∈ GF (2n) be independent of
all ai and uniformly distributed in GF (2n).

Then the distribution of
∑

i ai + M is (pairwise) independent of ai.

Proof. The proof for this lemma follows directly from Lemma 1.

Lemma 5 shows that for secure implementations, the order in which the terms
of a sum are added, is important! In particular, every summation of variables
must start with the addition of an independent mask M .

5 Comparison of Masking Schemes

A high-level comparison of the three masking schemes, S-Akkar, S-Blömer and
MS-IAIK shows that in terms of area, our scheme leads to the smallest imple-
mentation. Table 1 lists the number of high-level operations (multiplication, mul-
tiplication with a constant and square) in GF (16) of each of the three schemes.

Table 1. High-level comparison of masking schemes

Mult MultConst Square

S-Akkar 18 6 4
S-Blömer 12 1 2
MS-IAIK 9 2 2

We have not included a count of the GF (4) operations for S-Blömer and
MS-IAIK because they do not contribute significantly to the area. We have also
not included an XOR count in GF (16) because the number of XORs is highly
dependent on the amount of fresh masks which are available. In the following, we
discuss hardware implementations of S-Akkar and S-Blömer in more detail.

5.1 S-Akkar

S-Akkar makes use of multiplications in finite fields. In particular, 4 multipli-
cations, 1 inversion and 2 XORs in addition to the original inversion have to
be computed. All operations are performed in the finite field with 256 elements.
For a fair comparison, we assume that all multipiers are based on the same,
optimized multipliers which we consider for the implementation of S-IAIK. Be-
cause S-IAIK uses composite field arithmetic, three GF (16) multipliers and one
GF (16) constant-coefficient multiplier had to be combined according to [10] in
order to build a GF (2)[x]/(x8 + x4 + x3 + x + 1) multiplier. Counting only the
largest component of this circuit, which are the GF (16) multipliers, we see that
this implementation requires 4 × 3 = 12 GF (16) multipliers. Hence, the imple-
mentation of S-Akkar is much bigger than an implementation of our masking
scheme.



422 E. Oswald et al.

5.2 S-Blömer

S-Blömer suggests a comparable technique for counteracting (single-order) dif-
ferential side-channel attacks as we do. In this article, an implementation strat-
egy for a dedicated hardware implementation is outlined. In this strategy, the
architecture of the SubBytes operation is based on [12]. In [12], the authors
have used the Itho-Tsujii algorithm [7] for computing the multiplicative inverse
over a finite field. The Itho-Tsujii inversion algorithm leads to the same inversion
formulae as used in [15].

The major difference between [15] and [12] is that in [15], field polynomials
have been chosen that lead to particularly efficient finite field arithmetic. In [12],
other field polynomials have been chosen that lead to a less efficient finite field
arithmetic. Thus, S-Blömer suffers from this drawback.

S-Blömer leads to a larger SubBytes implementation than our proposal
MS-IAIK. This is based on the fact that in S-Blömer high-level operations
such as the finite field multiplication and the finite field squaring are masked.
As a consequence, correction terms are computed more often than necessary.
In particular, correction terms which involve multiplications cannot be re-used.
This, in combination with the less efficient finite field arithmetic, leads to an
increase in area.

S-Blömer requires the computation of three masked multiplications in GF (16).
One masked multiplication requires 4 ordinary GF (16) multiplications. Hence,
S-Blömer requires 12 GF (16) multipliers according to [12].

6 Conclusions

In this article, we have presented a new secure and efficient scheme for masking
the intermediate value of an AES SubBytes implementation. To motivate our
research, we have discussed zero-value attacks on multiplicative masking schemes
first. Zero-value attacks pose a serious practical threat. Therefore we have intro-
duced a new masking scheme which does not succumb to these attacks. We have
given arguments for the security of our scheme. In addition, we have compared
the number of operations needed in our scheme with other masking schemes; our
scheme requires the least amount of operations.
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Abstract. For the power consumption model called Hamming weight
model, we rewrite DPA attacks in terms of correlation coefficients be-
tween two Boolean functions. We exhibit properties of S-boxes (also
called (n, m)-functions) relied on DPA attacks. We show that these prop-
erties are opposite to the non-linearity criterion and to the propagation
criterion. To quantify the resistance of an S-box to DPA attacks, we in-
troduce the notion of transparency order of an S-box and we study this
new criterion with respect to the non-linearity and to the propagation
criterion.

1 Introduction

Block cipher algorithms embedded in cryptographic devices are sensitive to two
main kinds of attacks, which are usually investigated in parallel. The first kind
relies on the properties of the cryptographic primitives involved in the cryptosys-
tem. The second kind is based on the analysis of the hardware’s leakages.

The most well-known attacks against block ciphers algorithms are the known-
plaintext attacks called differential cryptanalysis [2, 13] and linear cryptanaly-
sis [21]. Most block cipher algorithms (such as DES or AES) use vectorial func-
tions, also called S-boxes, as cryptographic primitives. To protect such cryp-
tosystems against linear and differential attacks, S-boxes are designed to fulfil
some cryptographic criteria (balancedness, high nonlinearity or high algebraic
degree).

Since electronic components are not usually perfectly tamper-proof, one can
obtain sensitive information from side channels such as the timing of operations
or the power consumption. In 1996, Kocher successfully used this approach to
exhibit a first side-channel attack effective enough to recover secret keys in nu-
merous cryptosystems [16]. Since Kocher’s original paper, a large number of very
efficient attacks has been reported on a wide variety of cryptographic implemen-
tations (see for instance [4,5,8,11,22,25]). Among these attacks, the Differential
Power Analysis (DPA) is one of the most powerfull against iterated block ci-
phers. DPA are usually used to attack on either the first or the last round but
it can sometimes be applied to attack on intern rounds of the block ciphers. It
requires the knowledge of either the plaintext or the ciphertext. It relies on a
statistical analysis of a large number of samples where the same key operates

H. Gilbert and H. Handschuh (Eds.): FSE 2005, LNCS 3557, pp. 424–441, 2005.
c© International Association for Cryptologic Research 2005
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on different data. For this strategy of attacks, S-boxes involved in the cryp-
tosystems are usually considered by cryptanalysts and also by cryptographers
as oracles providing the output corresponding to a given data. So, to withstand
DPA attacks, countermeasures are added at the implementation level to make
the signals needed for these attacks useless.

The efficiency of DPA attacks is much greater than the efficiency of differen-
tial or linear cryptanalysis 1. Moreover, in the area of embedded cryptography,
because of the life expectancy of the device, known-plaintext attacks requiring
a large number of pairs plaintext/ciphertext or requiring a large number of en-
cryptions are unpracticable. The difference between the efficiencies of the two
categories of attacks is not taken into account to design block ciphers for smart
cards. Indeed, nearly all the algorithms embedded in smart cards have been de-
signed to resist at high level to linear, differential and high-order differential at-
tacks, whereas nothing has been done to make them inherently resistant to DPA
attacks. Countermeasures against DPA attacks are generally added to the algo-
rithms when implemented on devices. Following this addition, the performances
and the code sizes of the resulting embedded algorithms are approximately mul-
tiplied by two. This increase is damaging in the area of embedded cryptography
where the computation power and the memory capability are limited. The de-
sign of DPA-resistant algorithms would make the addition of countermeasures
innecessary. Such a design could be done by selecting pertinent S-boxes.

For a very particular power consumption model, Guilley et al. studied in [9]
the single-bit DPA attack in terms of correlation coefficients between two Boolean
signals, the first one depending on linear combinations of output-bits of S-boxes
and the second one depending on consumption. The authors pointed out that
the better shielded against linear cryptanalysis an S-box is, the more vulnerable
it is to side-channel attacks such as DPA. In this paper, we extend the study of
Guilley et al. for multi-bit DPA attacks and for the power consumption model
called Hamming weight model. We exhibit the properties of S-boxes related to
DPA attacks. We argue that these new properties and the classical cryptographic
criteria (such as the high non-linearity or the satisfaction of propagation criteria
at high level) cannot be satisfied simultaneously. Since a highly non-linear S-box
cannot withstand DPA attacks in an optimal way, we point out that a trade-off
between the classical cryptographic criteria and resistance to DPA attacks has to
be found. We introduce a new cryptographic criteria, that we call transparency
order of an S-box, to quantify the resistance of an S-box to DPA attacks. We
exhibit lower and upper bounds on it and we study their tightness. We prove in
particular that bent functions (and more generally functions satisfying PC(l) for
a high level l) cannot by definition resist DPA attacks. To ensure the resistance of
an algorithm to these attacks, we argue that the new criterion must be satisfied

1 For example, a DPA of a software DES without any countermeasure requires between
50 and 200 plaintext/ciphertext pairs, whereas the best non-side-channel attack
against DES requires under 64 terabytes of plaintexts and ciphertexts encrypted
under a single key.



426 E. Prouff

at a certain level and that this level depends on the amount of noise inside the
device and/or the number of encryptions that a cryptanalyst can do with the
same key.

This paper is organized as follows. In Sect. 2, we recall the basic facts about
the main cryptographic properties of S-boxes. In Sect. 3, we give the formal
definition of an iterated block cipher and we recall the theory behind DPA at-
tacks. To establish the relationship between these attacks and the cryptographic
properties of S-boxes, we rewrite in Sect. 4 the DPA attacks in terms of cor-
relation coefficients. After arguing that the efficiency of (single-bit or multi-bit)
DPA attacks relies on the behavior of the so-called differential trace, we analyze
it in Sect. 5. We use this analysis in Sect. 6 to investigate how S-boxes can
withstand DPA attacks. In Sect. 7, we introduce and we briefly study the notion
of transparency order of a function, whose aim is to quantify the resistance of
an S-box to DPA attacks.

2 Notation and Preliminaries

In this paper, we distinguish the additions of integers in R, denoted by +, and
the additions mod 2, denoted by ⊕. For simplicity and because there will be no
ambiguity, we denote by + the addition of vectors of F

n
2 (words) with n > 1.

We call (n,m)-function any mapping F from F
n
2 into F

m
2 . If m equals 1, then

the function is called Boolean. If F is an affine (n,m)-function, then we call
direction of F , the linear (n,m)-function L such that there is a vector B ∈ F

m
2

for which F (x) = L(x) + B, x ∈ F
n
2 .

For every vector a ∈ F
n
2 , n ∈ N, we denote by H(a) the Hamming weight of

a. We denote the all-zero vector (resp. the all-one vector) on F
m
2 , by 0m (resp.

by 1m). The set {x ∈ F
n
2/F (x) �= 0m} is called support of F : it is denoted by

Supp F . An (n,m)-function F is said to be balanced if every element y ∈ F
m
2

admits the same number 2n−m of pre-images by F .
To every (n,m)-function F , we associate the m-tuple (f1, · · · , fm) of Boolean

functions on F
n
2 , called the coordinate functions of F , such that we have F (x) =

(f1(x), · · · , fm(x)) for every x ∈ F
n
2 . The usual scalar product is denoted by

“·”. We recall that it is defined for every pair of vectors a = (a1, · · · , am) and
b = (b1, · · · , bm) by a · b =

⊕m
i=0 aibi.

To make the study of the properties of F easier, we introduce the sign function
of F , that is the function (x, v) �→ (−1)v·F (x) (if F is Boolean, the sign function
is the function x �→ (−1)F (x)). For every (n,m)-function F and for every vector
v ∈ F

m
2 , we have:

v · F =
1
2
− 1

2
(−1)v·F . (1)

The Fourier transform of the sign function of an (n,m)-function F (that we
call Walsh transform of F ) is the function WF defined on F

n
2×F

m
2 by the formula:

WF (u, v) =
∑

x∈Fn
2

(−1)v·F (x)+u·x
. (2)
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As we recall in the following proposition, the balancedness of a function can
be characterized through its Walsh transform’s coefficients.

Proposition 1. A (n,m)-function F is balanced if and only if WF (0, v) equals
zero for every vector v ∈ F

m
2

∗.

Let n be a positive integer and let f and g be two Boolean functions defined
on F

n
2 , the correlation coefficient of f and g, denoted by Cor (f, g), is defined by:

Cor(f, g) =
∑

x∈Fn
2

(−1)f(x)+g(x)
. (3)

If the output-bits of two Boolean functions are statistically independent, then
their correlation coefficient equals zero.

The nonlinearity of a function F is one of the parameters which quantify the
level of confusion brought in the system by the function (another such param-
eter is the degree). The nonlinearity of a vectorial function F is defined as the
minimum Hamming distance between the nonzero linear combinations of the
coordinate functions of F and the set of all Boolean affine functions (that is
functions x �→ a ·x⊕ b, a, b ∈ F

n
2 ). Cryptographic functions used in block ciphers

must have high nonlinearities to prevent linear attacks (see [21]).
For every (n,m)-function F , the nonlinearity NF and the Walsh transform

WF satisfy the relation NF = 2n−1 − 1
2 maxu∈Fn

2 ,v∈Fm
2

∗ |WF (u, v) |. The nonlin-
earity NF of every (n,m)-function F is upper bounded by 2n−1− 2n/2−1. If n is
even and m ≤ n

2 , then this bound is tight. The functions achieving it are called
bent.

Another useful tool for quantifying the cryptographic resistance of functions
is the notion of derivative. The derivative of F with respect to a vector a ∈ F

n
2

is the (n,m)-function DaF : x �→ F (x) + F (x + a). The notion of derivative is
related to differential and higher-order differential attacks [2, 13, 19]. A vector
a ∈ F

n
2 such that DaF is a constant function is called linear structure of F . The

space {a ∈ F
n
2 ; DaF = cst} is called linear space of F and it is denoted by εF .

As argued by Evertse in [7], the linear spaces of functions used as cryptographic
primitives in iterated block ciphers have be reduced to the null vector in order
to protect the systems against differential attacks.

Remark 1. Notice that for every (n,m)-function F and for every pair (a, v) ∈
F

n
2 ×F

m
2 , the correlation coefficient between Boolean functions x �→ v ·F (x) and

x �→ v · F (x + a) equals WDaF (0, v). -
The Strict Avalanche Criterion (SAC) was introduced by Webster and Tavares

in [32] and this concept was generalized into the Propagation Criterion (PC) by
Preneel [30]. These properties describe the behavior of a function whenever some
input coordinates are complemented. They must be satisfied at high levels, in
particular by functions involved in block ciphers. A function F satisfies PC(l)
if the function DaF is balanced for every vector a of weight at most l. In [31],
Rothaus showed that a function is bent if and only if it satisfies PC(n).

In the next section, our aim is to highlight the role that (n,m)-functions play
in DPA attacks on block ciphers.
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3 DPA Attacks on Iterated Block Ciphers

3.1 Introduction to Iterated Block Ciphers

To define an iterated block cipher in a formal way, we usually consider a family
(FK)K∈K of (n, n)-functions indexed by a value K ∈ K, where K is called the
round key space. The encryption function of the iterated block cipher with block
size n, with R rounds and with round functions FK is defined by:

X(i) = FKi

(
X(i−1)

)
for 1 ≤ i ≤ R, (4)

where X(0) is the plaintext and X(R) is the ciphertext.
The vector (K1, . . . , KR) is called the key and its coordinates are the round

keys.
As recalled in Sect. 2, balancedness is a fundamental property which has to

be satisfied by every designed round function FK , K ∈ K. A classical way to
define the balanced functions FK is to design or select the coordinates functions
of each FK being pairwisely independent. We assume in this paper that the
coordinate functions of every round function FK are pairwisely independent.

3.2 Introduction to Differential Power Analysis

Differential Power Analysis uses the fact that computers and microchips leak
information about the operations they process. Specific methods for analyzing
the power consumption measurements to find secret keys from tamper-resistant
devices have been studied in [3, 17, 25]. In what follows, we use notations in-
troduced in [17]. Moreover, we assume that the set K equals F

r
2, where r is a

positive integer.
Let (FK)K∈Fr

2
be a family of (n, n)-functions used as round functions in an

iterated block cipher embedded in a smart card, the power consumption of the
smart card after one round of the encryption of a message X ∈ F

n
2 using a round

key K̇ ∈ F
r
2 is usually (cf. [3, 17]) denoted by CK̇(X). Function CK̇ is called

power consumption function related to K̇ or power consumption function if there
is no ambiguity on K̇.

To describe the DPA attacks, one usually introduces a Boolean function D
called selection function and defined for every 3-tuple (X,K, j) ∈ F

n
2 × F

r
2 ×

{1, · · · , n} as the value of the jth bit of FK(X).
A DPA attack is done by computing a so-called differential trace whose values

are related to the selection function and to the power consumption function. In
what follows, we recall the definition of the differential trace.

Definition 1. [17] Let (FK)K∈Fr
2

be a family of permutations on F
n
2 and let

D be a selection function related to this family. Let (Xi)i≤N be a family of
N distinct vectors of F

n
2 (randomly chosen if N < 2n). Then, for every pair

(K, K̇) ∈ F
r
2
2 and for every integer j ≤ n, the differential trace of K with

respect to the 3-tuple (K̇,N, j) is denoted by ΔK,K̇(N, j) and defined by:
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ΔK,K̇(N, j) =

N∑
i=1

D(Xi,K, j)CK̇(Xi)∑N
i=1 D(Xi,K, j)

−

N∑
i=1

(1−D(Xi,K, j))CK̇(Xi)∑N
i=1(1−D(Xi,K, j))

, (5)

where CK̇ is the power consumption function related to K̇.

For large values N , the value ΔK,K̇(N, j) approximately equals ΔK,K̇(2n, j).
To simplify notations, we denote ΔK,K̇(2n, j) by ΔK,K̇(j).

In Relation (5), information about the secret parameter K̇ is given by the
power consumption function CK̇ . Each value CK̇(X) can be viewed as the energy
to flip bits from a previous state to state FK̇(X). To better understand the kind
of information this function can give about the round key K̇, a theoretical model
for the power consumption of devices must be introduced.

In this paper, we use the Hamming distance model introduced in [3] as a
generalization of the Hamming weight model (cf. [1]). In the Hamming distance
model, it is assumed that switching a bit from 0 to 1 requires the same amount
of energy as switching it from 1 to 0. The average power consumption to switch
a bit from 0 to 1 is denoted by c and for every pair (X,K) ∈ F

n
2 × F

r
2, one

denotes by α(X,K) ∈ F
n
2 the value of the data which is replaced by FK(X) on

the device. We call state function function α. For every pair (X,K) ∈ F
n
2 × F

r
2,

we assume throughout this paper that the power consumption CK(X) satisfies
the relation CK(X) = c×H (α(X,K) + FK(X)) + w, where w denotes a noise.

Remark 2. Due to Relation (1), we have:

CK(X) =
nc

2
− c

2
×
∑
u∈F

n
2

H(u)=1

(−1)u·(α(X,K)+FK(X)) + w . (6)

-
In the following section, we describe DPA attacks more formally and we

rewrite the differential trace in terms of correlation coefficients for balanced S-
boxes and for constant noise w.

4 DPA Attacks and Correlations

4.1 Single-Bit DPA Attacks

One denotes by K̇ the first round key used in an iterated block cipher encrypting
messages X. We assume in this section that a cryptanalyst wants to retrieve K̇
and that he has measured nearly all the values CK̇(X), X ranges over F

n
2 .

In the rest of the paper, since we only consider the restriction α(·, K̇) of
the state function α, we denote by α the function X �→ α(X, K̇) to simplify
notations.

Let (K̇,N, j) ∈ F
r
2 × {1, · · · , 2n} × {1, · · · , n} be a fixed 3-tuple. In a DPA

attack, coefficients ΔK,K̇(N, j) are computed for different round keys K ∈ F
r
2
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until one value is significantely greater than the others. Let us denote by Kt

the corresponding key. The core of the attack is the following: if ΔKt,K̇(N, j)
is significantely greater than the other values ΔK,K̇(N, j), K ∈ F

r
2, then equal-

ity Kt = K̇ holds with high probability. Since such an attack uses one sin-
gle bit (of index j) of the outputs FK̇(X), it is usually called single-bit DPA
attack.

Currently, the main cryptographic properties of S-boxes (nonlinearity, re-
siliency, balancedness and propagation criteria) are characterized through the
Walsh transform. Therefore, to reveal the properties of balanced S-boxes that
are related to DPA attacks, we start rewriting the differential trace of a vector
in terms of correlation coefficients.

Lemma 1. Let (FK)K∈Fr
2

be a family of (n, n)-functions. Let α denote the state
function of a cryptographic system implementing FK , K ∈ F

r
2, as round functions

and let c denote the average power consumption to switch a bit in the system.
If all the functions FK are balanced, then for every pair (K, K̇) ∈ F

r
2
2 and for

every positive integer j ≤ n, we have :

ΔK,K̇(j) =
c

2n

∑
u∈F

n
2

H(u)=1

Cor (v · FK , u · (FK̇ + α)) , (7)

where v = (v1, · · · , vn) ∈ F
n
2 is such that vj = 1 and vi = 0 if i �= j.

Proof. By definition of v, we have D(X,K, j) = v · FK(X), which implies
equalities

∑
X∈Fn

2
D(X,K, j) = #Supp(v · FK) and

∑
X∈Fn

2
(1 − D(X,K, j)) =

2n − #Supp(v · FK). Because we assume that every FK is balanced, it follows
that cardinality of Supp(v · FK) equals 2n−1 for every pair (v,K) ∈ F

n
2 × F

r
2,

v �= 0. Thus, Relation (5) applied for N = 2n implies the equality ΔK,K̇(j) =
−1

2n−1 (
∑

X (1− 2(v · FK(X))) CK̇(X)). Using Relation (1), we obtain ΔK,K̇(j) =
−1

2n−1

∑
X(−1)v·FK(X)CK̇(X). This equality and Relation (6) imply

ΔK,K̇(j) =
−nc− 2w

2n

∑
X∈Fn

2

(−1)v·FK(X)

+
c

2n

∑
u∈F

n
2

H(u)=1

∑
X∈Fn

2

(−1)v·FK(X)+u·(α(X)+FK̇(X)) , (8)

where we recall that w denotes a constant noise. Due to the balancedness of
FK and Proposition 1, the first summation in Relation (8) is null for every
non-zero vector v and for every K ∈ F

r
2. Because the second summation in

Relation (8) equals c
2n

∑
u∈F

n
2

H(u)=1

Cor (v · FK , u · (FK̇ + α)), Relations (8) and (7)

are equivalent. -

More generally a DPA attack can be done by studying correlations between a
non-zero linear combination v ·FK and all the coordinate functions of FK̇ , when
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K ranges over F
r
2.. To take this remark into account, we extend Definition 1 by

assuming that the differential trace of a vector K is defined with respect to a
pair (K̇, v) by:

ΔK,K̇(v) =
c

2n

∑
u∈F

n
2

H(u)=1

Cor (v · FK , u · (FK̇ + α)) . (9)

In our model, a single-bit DPA attack on the first round of a block cipher
is led by designing, for a vector v ∈ F

n
2
∗, the set of round keys K such that

|ΔK,K̇(v)| is maximal.

4.2 Multi-bit DPA Attacks

Single-bit DPA attacks were generalized in multi-bit DPA attacks in [3,23,24,26,
29]. Among these generalizations, the multi-bit DPA attack proposed by Brier et
al. in [3] is the most efficient. It is led by searching for high correlations between
functions X �→ H (FK(X)), K ∈ F

r
2, and the power consumption function X �→

CK̇(X), where K̇ is the expected round key. One can prove as in Lemma 1 (and
for the same assumptions on (FK)K∈Fr

2
) that multi-bit DPA attack is done by

selecting round keys K which maximize the value δK̇(K) defined for every pair
(K, K̇) ∈ F

r
2
2 by:

δK̇(K) = |
∑

v∈Fn
2 , H(v)=1

ΔK,K̇(v)| . (10)

To better understand how the candidate round keys are selected, we study
the differential trace in the next section.

5 Analysis of the Differential Trace

Values ΔK,K̇(v) (and hence δK̇(K)) are strongly related to the assumptions
which are made on the state function α. Indeed, as noticed in [3, 5, 8], if α
is supposed to be unknown and dependent on FK̇ , then the values taken by
(K, v) �→ ΔK,K̇(v) cannot be used to get information about the round key K̇.
Consequently, it is usually assumed either that functions α and FK are indepen-
dent for every round key K ∈ F

r
2, or that α is constant.

5.1 Functions FK and Function α Are Independent

To prevent statistical attacks, round functions (FK)K∈Fr
2

of iterated block ciphers
are currently designed such that the coordinates of vectors Y = FK(X), X ∈ F

n
2 ,

are statistically independent. Moreover, to withstand differential and statistical
attacks, the functions in (FK)K∈Fr

2
are defined to be as uncorrelated as possible.

Then, for every pair of distinct elements (K, K̇) ∈ F
r
2
2 and for every pair (u, v) ∈

F
n
2
∗ × F

n
2
∗, u �= v, one can realistically assume in a cryptographic area that

Cor(v ·FK , u ·FK̇) equals zero (let us notice that in the particular case u = v, it
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cannot be usually assumed that functions u · FK and u · FK̇ are uncorrelated).
This assumption is related to the hypothesis of wrong-key randomization [10,18].
Under this assumption, we argue in the following proposition that the differential
trace has a very simple behavior.

Proposition 2. Let (FK)K∈Fr
2

be a family of (n, n)-functions. Let α denote the
state function of a cryptographic system implementing functions FK , K ∈ F

r
2, as

round functions and let c denote the average power consumption to switch a bit
in the system. If for every pair (K, K̇) ∈ F

r
2
2 and for every pair of distinct vectors

(u, v) ∈ F
n
2

2 s.t. H(u) = 1, functions u · FK and v · FK̇ are independent and if
α is independent of the round functions FK for every K ∈ F

r
2, then for every

3-tuple (v,K, K̇) ∈ F
n
2
∗×F

r
2
2, coefficient ΔK,K̇(v) equals c(−1)

v·(FK+F
K̇

)

2n Wα(0, v)
if v · (FK + FK̇) is constant and equals 0 otherwise.

Proof. Because the functions α and FK are independent for every K ∈ F
r
2, the

correlation coefficient Cor(v · FK ⊕ u · FK̇ , u · α), (u, v) ∈ F
n
2

2, H(u) = 1, equals
zero if v · FK ⊕ u · FK̇ is not constant and equals ±Wu·α(0) if v · FK ⊕ u · FK̇ is
constant. We assumed that Boolean functions v ·FK and u ·FK̇ are independent
for every pair (K, K̇) ∈ F

r
2
2 and every pair of distinct vectors (u, v) such that

H(u) = 1. One deduces that if v · FK ⊕ u · FK̇ is constant, then u equals v (and
H(v) = 1). -

5.2 Study of ΔK,K̇ When α Is Constant

It is realistic to assume that during the execution of an algorithm embedded in
smart cards, state function α is constant. This can be assigned to the so-called
pre-charged logic where the bus is cleared between each significant transferred
value or when the previous operation concerning the bus is an opcode loading
(cf. [5]). As explained in [3], another possible reason is that complex architectures
implement separated busses for data and addresses, that may prohibit certain
transitions.

Proposition 2 was established after assuming in particular that functions
v · FK ⊕ u · FK̇ and u · α are independent for every pair of distinct nonzero
vectors (u, v) ∈ F

n
2

2, H(u) = 1, and every pair (K, K̇). When α is assumed to be
constant, this assumption cannot be satisfied. However when α is constant, Re-
lation (9) can be rewritten ΔK,K̇(v) = c

2n

∑
u∈F

n
2

H(u)=1

(−1)u·βCor (v · FK , u · FK̇),

after denoting by β the constant value of α. Thus, one straightforwardly deduces
the following proposition:

Proposition 3. Let (FK)K∈Fr
2

be a family of (n, n)-functions. Let α denote the
state function of a cryptographic device implementing functions FK , K ∈ F

r
2, as

round functions and let c denote the average power consumption to switch a bit
in the system. Let us assume that functions v · FK and u · FK̇ are independent
for every pair (K, K̇) ∈ F

r
2
2 and for every pair of distinct elements (u, v) ∈ F

n
2

2,
H(u) = 1. If α is constant, equal to β ∈ F

n
2 , then for every 3-tuple (v,K, K̇) ∈

F
n
2
∗ × F

r
2
2, the differential trace of K with respect to (K̇, v) satisfies:
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ΔK,K̇(v) =
c× (−1)v·β

2n
Cor (v · FK , v · FK̇) . (11)

5.3 Efficiency of the Discrimination of Round Keys in DPA
Attacks

Usually, DPA attacks do not permitt to obtain the expected key K̇ immediately
but allow to isolate it in a subset of F

r
2. For single-bit DPA attacks (resp. multi-

bit DPA attacks), the elements of this subset correspond to ghost peaks in the
distribution of the values of the function K ∈ F

r
2 − {K̇} �→ |ΔK,K̇(v)| (resp.

K ∈ F
r
2 − {K̇} �→ |δK̇(K)|). Clearly, the greater the number of ghost peaks,

the smaller the efficiency of the attack. Indeed, wrong guesses have to be tested
again.

Under assumptions done in Propositions 2 and 3, the set of round keys se-
lected in a single-bit DPA attack with respect to a pair (v, K̇) contains the set
{K ∈ F

r
2| v · (FK + FK̇) = cst}. Indeed, when the state function is constant or

independent of functions FK , then the value |ΔK,K̇(v)| is maximal for every K
belonging to {K ∈ F

r
2| v · (FK + FK̇) = cst}. For multi-bit DPA attacks on a de-

vice with random (or null) state function, the set of selected round keys admits
the set {K ∈ F

r
2| FK + FK̇ ∈ {0n, 1n}} as a subset.

6 Resistance of S-Boxes to DPA Attacks When Round
Keys Are Introduced by Addition

In many iterated block ciphers such as DES [27] or AES [28], the round key is
introduced by addition. In this case, we have r = n and, for every round key
K ∈ F

n
2 , the round function FK is the function X �→ F (X + K), where F is

a robust cryptographic permutation on F
n
2 . In such a system we call S-box the

function F .
In the rest of the paper, we assume that the round keys are introduced

by addition. Under this assumption, Propositions 2 and 3 imply the following
corollary:

Corollary 1. Let F be an (n, n)-function whose coordinate functions are pair-
wisely independent and let α be the state function of a cryptographic device in
which F is embedded as an S-box. If α is independent of F or constant, then
the number of round keys selected after a single-bit DPA attack with respect to
the vector v ∈ F

n
2 (resp. after a multi-bit DPA attack) is greater than or equal

to #εv·F (resp. #εF ).

One cannot withstand multi-bit DPA attacks by increasing the size of the
linear space εF of F , since the elements of K̇ + εF act in a very similar way in
the cryptosystem. Indeed, by definition of εF , for every element K in K̇ + εF ,
there exists a constant C ∈ F

n
2 such that X �→ F (X+K̇) and X �→ F (X+K)+C

are equal.
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We showed in Sect. 4.2 that only vectors K such that δK̇(K) is maximal have
to be stored as good candidate round keys. In practice, because of the imper-
fections of the measurements (and also because the values of K �→ ΔK,K̇(N, j),
N ≤ 2n and j ≤ n fixed, are not computed for N = 2n but for large N � 2n),
every tested vector such that δK̇(K) is significantely high, is stored as a good
candidate key (even if δK̇(K) is not the maximal value achieved). For this reason,
it is difficult to mount an efficient DPA attack when the amplitude of the peaks
in the distribution of the values δK̇(K), K ∈ F

n
2 , are not high enough (cf. [5,6]).

Indeed, let us denote by σ the assumed margin of error on the computation of
values δK̇(K). We argued in Sect. 4 that under some realistic assumptions, the
value δK̇(K) is always maximal for K = K̇. Thus, if the average value

D(K̇) =
1

2n − 1

∑
K∈Fn

2 −{K̇}

(
δK̇(K̇)− δK̇(K)

)
(12)

is smaller than σ, then the peaks in the distribution of values δK̇(K) could not
be identified by an attacker because of the imperfections of the measurements.
Reciprocally, if Difference (12) is significantly higher than σ, then the peak
corresponding to δK̇(K̇) will clearly appear in the distribution of values δK̇(K)
when K ranges over F

n
2 .

Let us develop the computation of D(K̇) for α independent of F and for α
constant.

Lemma 2. Let F be a (n, n)-function whose coordinate functions are pairwisely
independent and let α be the state function of a cryptographic system implement-
ing F as an S-box.
If α is independent of F , then for every element K̇ ∈ F

n
2 we have :

D(K̇) =
c

2n
|
∑
v∈F

n
2

H(v)=1

Wα(0, v)| − 1
2n − 1

∑
K∈Fn

2 −{K̇}

δK̇(K) . (13)

If α is constant and equals β ∈ F
n
2 , then for every element K̇ ∈ F

n
2 we have :

D(K̇) = c|n− 2H(β)| − c

22n − 2n

∑
a∈Fn

2
∗
|
∑
v∈F

n
2

H(v)=1

(−1)v·βWDaF (0, v)| . (14)

Proof. Due to Proposition 2, if α and F are independent, then the summa-
tions
∑

v∈Fn
2 , H(v)=1 ΔK̇,K̇(v) and c

2n

∑
v∈Fn

2 , H(v)=1 Wα(0, v) are equivalent: one
straightforwardly deduces Relation (13). If the function α equals the constant
value β, coefficient Wα(0, v) in Relation (13) equals (−1)v·β×2n. Moreover, due
to Remark 1 and Relation (11), one has

ΔK,K̇(v) =
c

2n
× (−1)v·βWDK+K̇F (0, v) . (15)

From Relations (1), (10), (13) and (15), one deduces Relation (14). -
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Remark 3.
1. More generally, one can rewritte Relation (14) for (n,m)-functions as:

D(K̇) = c|m− 2H(β)| − c

22n − 2n

∑
a∈Fn

2
∗
|
∑
v∈F

n
2

H(v)=1

(−1)v·βWDaF (0, v)| . (16)

Moreover, due to Relation (1), summation
∑

v∈F
n
2

H(v)=1

(−1)v·βWDaF (0, v) is also

equal to [n2n − 2
∑

X∈Fn
2

H(β + DaF (X))]. 2. For every vector t ∈ F
n
2 , let τt

denotes the function X ∈ F
n
2 �→ X + t. Since WDK+K̇F (0, v) equals the function

X �→ Cor(v ·F, v ·F ◦ τK+K̇), Relation (15) relates the differential trace function
to the cross-correlation function of the coordinate functions of F viewed as
binary sequences (see for instance [12] for more details about the cross-correlation
function of binary sequences). -

As we recalled in Sect. 5.2, it is realistic to assume that during the execution of
an algorithm running in a smart card environment, state function α is constant.
For such a case, we introduce a new notion, that we call transparency order of a
function, to quantify the resistance of an S-box to (single bit or multi-bit) DPA
attacks.

7 Transparency Order of S-Boxes

7.1 Definition

Let us assume that the state function is constant. Usually, one cannot presuppose
the constant value taken by α, which depends on the implementation. Thus, to
thwart DPA attacks on one round of an iterated block cipher, the D(K̇) values
have to be small enough not only for any round key K̇ but also for every possible
value β. This remark leads us to introduce a new criterion on S-boxes. In order
to be as general as possible, we introduce the notion for (n,m)-functions and
not only for permutations on F

n
2 .

Definition 2. Let n and m be two positive integers and let F be an (n,m)-
function. The transparency order of F , denoted by TF , is defined by:

TF = max
β∈Fm

2

(|m− 2H(β)| − 1
22n − 2n

∑
a∈Fn

2
∗
|
∑

v∈F
m
2

H(v)=1

(−1)v·βWDaF (0, v)|). (17)

The smaller the transparency order of an S-box, the higher its resistance to
DPA attacks. Indeed, to make the peak corresponding to δK̇(K̇) undistinguish-
able from noise of measurements, value δK̇(K̇) must be approximately equal to
the average amplitude δK̇(K) when K ranges over F

n
2 . Thus, the greatest trans-

parency order that an S-box can achieve without compromising its resistance
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to DPA attacks depends on the quality of the measurements an attacker can
achieve 2.

7.2 Study of Transparency Order of S-Boxes

In order to determine what a reasonably high transparency order is, there is a
need for an upper bound on the transparency order of (n,m)-functions. In what
follows, we introduce an upper bound and a lower bound on the transparency
order of a function. We show that these bounds can be achieved.

Theorem 1. Let n and m be two positive integers, transparency order TF of
every (n,m)-function F satisfies the following relation:

0 ≤ TF ≤ m . (18)

If every coordinate function of F is bent, then TF = m. Moreover, TF is null if
and only if F is an affine function, whose direction L satisfies Im(L) ⊆ {0m, 1m}.

Remark 4. Since n-variables bent functions only exist for n even, the tightness
of the upper bound in Relation (18) is still an open problem for n odd. -

Being unbalanced, bent functions are never used as cryptographic primitives.
However, due to their properties recalled in Sect. 2 (optimal non-linearity and
only balanced non-zero derivatives), they resist in an optimal way to linear and
differential cryptanalysis. By showing that bent functions are the weakest pos-
sible functions from DPA attacks viewpoint, Theorem 1 establishes that it is
impossible to design a function that can resist in an optimal way to linear, dif-
ferential and DPA attacks. In the following proposition, we show more generally
that the functions satisfying PC(l) for a large (but not necessarily optimal) order
l do not have a good transparency order.

Proposition 4. Let m and n be two positive integers such that m ≤ n. Let F
be a (n,m)-function. Let l ≤ n be a positive integer. If F satisfies the PC(l)
criteria, then the transparency order of F satisfies:

TF ≥ m

(
1−

2n −
∑l

j=0

(
n
j

)
2n − 1

)
. (19)

Proof. Because function F satisfies PC(l), then function DaF is balanced for
every vector a s.t. H(a) ≤ l. Due to Proposition 1, one deduces that for every
vector a such that H(a) ≤ l and for every non-zero vector v ∈ F

m
2 , we have

WDaF (0, v) = 0. Thus, if F satisfies PC(l), then for every vector β ∈ F
m
2 , we

have ∑
a∈Fn

2
∗
|
∑

v∈F
m
2

H(v)=1

(−1)v·βWDaF (0, v)| =
∑

a∈F
n
2
∗

H(a)>l

|
∑

v∈F
m
2

H(v)=1

(−1)v·βWDaF (0, v)| .

2 By adding Hardware’s countermeasures to the device, it is possible to ensure a
minimal margin of error for any measurement of the power consumption.
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The cardinality of the set {a ∈ F
n
2 , H(a) > l} is 2n −

∑l
j=0

(
n
j

)
. Moreover,

since every value WDaF (0, v) is lower than or equal to 2n, then the inequality
|
∑

v∈F
m
2

H(v)=1

(−1)v·βWDaF (0, v)| ≤ m2n is satisfied for every β ∈ F
m
2 . One deduces

the following relation for every vector β ∈ F
m
2 :

∑
a∈Fn

2
∗
|
∑

v∈F
m
2

H(v)=1

(−1)v·βWDaF (0, v)| ≤ m2n

⎛⎝2n −
l∑

j=0

(
n

j

)⎞⎠ . (20)

From Relations (17) and (20) and the fact that maxβ |m − 2H(β)| is maximal
for β ∈ {0m, 1m}, one deduces Inequality (19). -

In the next proposition, we investigate the transparency order of affine (n,m)-
functions. In particular, we argue that the transparency of an affine function is
related to the weight enumerators of the cosets of Im(L), where Im(L) is seen as
a binary linear code.

Proposition 5. Let n and m be two positive integers. Let F be an affine (n,m)-
function admitting L for direction, then its transparency order satisfies the fol-
lowing relation:

TF = max
β∈Fm

2

⎛⎝ 2n

2n − 1
|m− 2H(β)| − 1

2n − 1

m∑
j=0

|m− 2j|Nj,β

⎞⎠ , (21)

where Nj,β denotes the cardinality of the set {a ∈ F
n
2 ; H(L(a) + β) = j}.

Moreover, if F is balanced, then its transparency order satisfies:

TF =

⎧⎨⎩
2n

2n−1

(
m− m

2m

(
m
m
2

))
if m is even

2n

2n−1

(
m− 2m

2m

(m−1
m−1

2

))
if m is odd

. (22)

Remark 5.
1. In Proposition 5, the set β + Im (L) can be viewed as a coset of a linear
code. Let C denotes this code. If β belongs to C, then β + Im(L) = Im(L) and
values Nj,β , j ≤ m, are the coefficients of the weight enumerator of C (see for
instance [20] for more details about weight enumerators of codes).
2. We recall that for m even and due to Stirling’s formula, we have

(
m

m/2

)
 

2m/
√

m
2 π for large values of m. Thus for large values m and for balanced affine

(n,m)-functions F , the transparency order of F equals approximately 2n

2n−1 (m−√
2m
π ) if m is even and to 2n

2n−1

(
m− m√

(m−1)π
2

)
if m is odd. -

Due to Proposition 5 and to Remark 5, the transparency order of balanced
affine functions is not close to 0 for high values m. Moreover, Relation (21) relates
the problem of the construction of affine functions with small transparency order
to the problem of defining linear codes whose elements have a Hamming weight
either close to 0 or close to m.
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8 Conclusion

The study of DPA attacks in terms of correlation coefficients enables us bet-
ter to understand these attacks. It allows us to characterize the properties of
S-boxes related to DPA attacks. To quantify the information leakage of devices
involving S-boxes, we introduced the notion of transparency order. We estab-
lished a spectral characterization of the transparency order of S-boxes and we
exhibit its upper and lower bounds. We proved that the lower bound is achieved
by particular affine functions and we proved that the transparancy order of
bent functions achieves the upper bound. The construction of highly-nonlinear
S-boxes with small transparency order (close to 0) is an open problem. The defi-
nition of such S-boxes would allow the design of specific block cipher algorithms
for smart cards which are less resistant to linear or differential attacks but are
inherently resistant to DPA attacks. To make up for this security loss, such al-
gorithms can be implemented in smart cards without the high penalties due to
DPA-countermeasures.
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volume 1965 of LNCS, pages 78–92. Springer, 2000.

21. T. Messerges. Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois, 2000.

22. T. Messerges, E. Dabbish, and R. Sloan. Investigations of Power Analysis Attacks
on Smartcards. In the USENIX Workshop on Smartcard Technology (Smartcard
’99), pages 151–161, 1999.

23. T. Messerges, E. Dabbish, and R. Sloan. Power Analysis Attacks of Modular
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A Proofs of Theorem 1 and of Proposition 5

A.1 Proof of Theorem 1

Proof. The value of |m − 2H(β)| is upper bounded by m and equals m for
β = 0m, 1m. On the other hand, values taken by the summation in Relation (17)
belong to [0;m]. One straightforwardly deduces Inequality (18).
TF equals m if and only if β ∈ {0m, 1m}. In this case, the value of the summa-
tion
∑

a∈Fn
2
∗ |
∑

v∈F
m
2

H(v)=1

(−1)v·βWDaF (0, v)| is null if and only if the summation∑
v∈F

m
2

H(v)=1

WDaF (0, v) is null for every non-zero vector a. On the other hand, if

every coordinate function of F is bent, then for every a ∈ F
n
2 and every v ∈ F

m
2

such that H(v) = 1, the function Da(v · F ) is balanced and (due to Proposition
1) satisfies WDaF (0, v) = 0. One concludes that such functions F , TF is maximal
and equals m.
Now, we show that if TF is null, then F is an affine function, whose direction
L satisfies Im(L) ⊆ {0m, 1m}. By definition, TF is greater than or equal to each
value

|m− 2H(β)| − 1
2n(2n − 1)

∑
a∈Fn

2
∗
|
∑

v∈Fm
2 ,H(v)=1

(−1)v·βWDaF (0, v)| ,

β ∈ F
m
2 , which implies (for β ∈ {0m, 1m}):

m− 1
2n(2n − 1)

∑
a∈Fn

2
∗
|
∑

v∈Fm
2 , H(v)=1

WDaF (0, v)| ≤ TF . (23)

The left-hand side of Relation (23) being always positive or null, if TF equals 0,
then m − 1

2n(2n−1)

∑
a∈Fn

2
∗ |
∑

v∈Fm
2 , H(v)=1 WDaF (0, v)| must equal 0, which is

equivalent to: ∑
a∈Fn

2
∗
|
∑

v∈Fm
2 , H(v)=1

WDaF (0, v)| = m2n(2n − 1) . (24)

Relation (24) is satisfied if and only if |WDaF (0, v)| equals 2n for every pair
(a, v) ∈ F

n
2
∗ × F

m
2 , H(v) = 1, which implies that F is affine. Let L denote the

direction of F , then Relation (24) is equivalent to∑
a∈Fn

2
∗
|
∑

v∈Fm
2 , H(v)=1

(−1)v·L(a)| = m(2n − 1) ,

and the equality holds if and only if
∑

v∈Fm
2 , H(v)=1(−1)v·L(a) (that is the value

m− 2H(L(a))) equals ±m i.e. if and only if L(a) equals 0m or 1m. One deduces
that if TF equals 0, then F is an affine function whose direction L satisfies
Im(L) ⊆ {0m, 1m}. Let us prove now that this necessary condition is a sufficient
one.
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Let F be an affine function whose direction L satisfies Im(L) ⊆ {0m, 1m}. Then
summation |

∑
v∈Fn

2 ,H(v)=1 WDaF (0, v)| equals 2n|m− 2H(β)| if L(a) = 0m and
equals 2n|m − 2H(β + 1m)| if L(a) = 1m. Since one has |m − 2H(β + 1m)| =
|m− 2H(β)|, one deduces the equality∑

a∈Fn
2
∗
|
∑

v∈Fn
2 ,H(v)=1

WDaF (0, v)| = 2n(2n − 1)|m− 2H(β)| ,

and hence, that TF is null. -

A.2 Proof of Proposition 5

Before providing proof of Proposition 5, let us first introduce the following tech-
nical lemma:

Lemma 3. For every positive integer m, the following relation is satisfied:

m∑
j=0

|m− 2j|
(

m

j

)
=

{
m
(

m
m
2

)
if m is even

2m
(m−1

m−1
2

)
if m is odd

. (25)

Using Lemma 3, a proof of Proposition 5 is:

Proof. Function L being the direction of F , for every pair (a, v) ∈ F
n
2 × F

m
2 ,

coefficient WDaF (0, v) equals 2n(−1)v·L(a). Thus, for every β ∈ F
m
2 , summation∑

v∈F
m
2

H(v)=1

(−1)v·βWDaF (0, v) equals 2n (m− 2H (β + L(a))). Hence, from Rela-

tion (17) one deduces:

TF = max
β∈Fm

2

⎛⎝ 2n

2n − 1
|m− 2H(β)| − 1

2n − 1

∑
a∈Fn

2

|m− 2H (β + L(a))|

⎞⎠ . (26)

Because summation
∑

a∈Fn
2
|m− 2H (β + L(a))| can be rewritten on the form∑m

j=0

∑
a∈Fn

2 ,H(β+L(a))=j |m− 2j|, Relation (21) is satisfied.
If F is balanced, then Im(L) = β + Im(L) = F

m
2 and Nj,β equals 2n−m ×(

m
j

)
for every vector β and every integer j ≤ m. In this case, summation∑

a∈Fn
2
|m− 2H (β + L(a))| equals 2n−m

∑m
j=0 |m− 2j|

(
m
j

)
. By applying Lemma

3, one deduces that for every balanced affine (n,m)-function, Relations (22) and
(26) are equivalent. -
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